

БЫТОВОЕ И КОММЕРЧЕСКОЕ НАЗНАЧЕНИЕ

КАТАЛОГ ОБОРУДОВАНИЯ

БЫТОВОЕ И КОММЕРЧЕСКОЕ НАЗНАЧЕНИЕ

КАТАЛОГ ОБОРУДОВАНИЯ

СОДЕРЖАНИЕ

	В ногу с мировым прогрессом в области кондиционирования	4
	Обозначение моделей климатической техники Kentatsu	5
	Климатическая техника Kentatsu, представленная в каталоге	6
	Основные сведения о кондиционерах	
	Настенный тип KSGX_HFA (охлаждение / нагрев)	8
	Настенный тип KSGMA_HZA, KSGMA_HFA (охлаждение / нагрев)	10
EW	Настенный тип KSGB_HZA, KSGB_HFA (охлаждение / нагрев)	12
	Настенный тип KSGR_HZA, KSGR_HFA (охлаждение / нагрев)	14
	Настенный тип KSGN_HFA (охлаждение / нагрев)	16
	DC-инверторная мультисистема со свободной комбинацией внутренних блоков K-MRE(F)	18
EW	Канальный тип средненапорный KSKR_HF, KSKS_HF	22
	Канальный тип средненапорный KSKT_HFA	24
	Канальный тип высоконапорный KSTV_HFA, KSTU_HFA	26
	Канальный тип высоконапорный KSTU_HFA	28
	Кассетный тип KSZT_HFA	30
	Кассетный тип KSVR_HFA, KSVQ_HFA	32
	Универсальный тип KSHV_HFA, KSHE_HFA	34
	Напольный тип KSFV_XFA, KSFW_XFA	36
	Компрессорно-конденсаторные блоки КННА	38
	Крышный кондиционер KRFN_C(H)FA	39
	Общие справочные сведения	40
	Таблица совместимости пультов управления с модельными рядами внутренних блоковблоков годинать правления с	40
	Пульты дистанционного управления KIC и KWC	41
	Центральные системы кондиционирования Kentatsu	43
	Центральная многозональная система DX PRO	44
	Кому и чем удобна система DX PRO?	45
	Программа DX PRO Select	48
	Системы DX PRO V	49
	Системы DX PRO IV	
	Системы DX PRO IV HR с рекуперацией теплоты	
	Наружные блоки большой производительности DX PRO IV Individual Системы DX PRO mini и DX PRO Compact	
	Системы с водяным охлаждением конденсатора DX PRO W	
	71 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

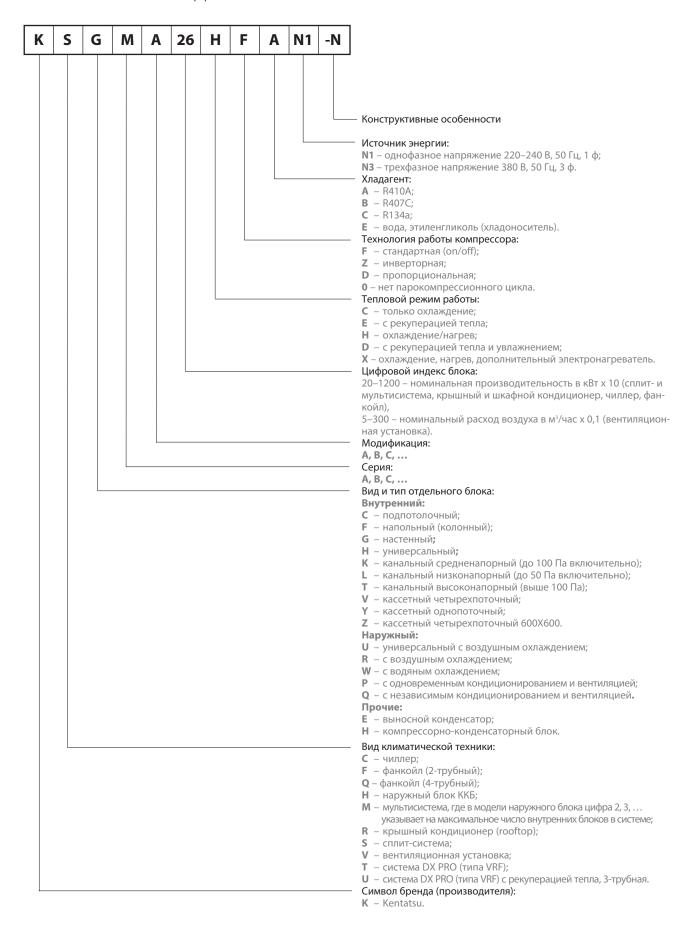
	Внутренние блоки	
	Внутренние блоки настенного типа КТGZ	71
	Внутренние блоки настенного типа КТGY	72
	Внутренние блоки кассетного типа однопоточные КТҮҮ	73
	Внутренние блоки кассетного типа четырехпоточные 600х600 КТZY	74
	Внутренние блоки кассетного типа четырехпоточные КТVY	75
NEW	Внутренние блоки канального типа низконапорные КТLZ, КТLZА	76
	Внутренние блоки канального типа средненапорные КТКХ	77
NEW	Внутренние блоки канального типа средненапорные КТКZA	78
	Внутренние блоки канального типа высоконапорные КТТХ	79
	Внутренние блоки канального типа высоконапорные КТТҮ (с функцией приточной вентиляции)	80
	Внутренние блоки универсального типа КТНХ	81
	Последовательность подбора элементов трубопровода хладагента для системы DX PRODX	82
	Пульты дистанционного управления	
	Централизованное управление кондиционированием	90
	Фанкойлы	
	Фанкойлы кассетного типа (600х600) КFZF	
	Фанкойлы кассетного типа (600х600) KQZF	
	Фанкойлы кассетного типа KFVE	
	Фанкойлы кассетного типа KQVE	
	Фанкойлы канального типа средненапорные KFKD	
	Фанкойлы канального типа средненапорные КQKD	
	Фанкойлы канального типа высоконапорные КРТЕ	
	Фанкойлы настенного типа KFGA	
	Фанкойлы настенного типа KFGB	
	Фанкойлы напольно-потолочного типа KFHD/KFHE	102
	Центральные кондиционеры Kentatsu STORMANN AERO	
	Модельный ряд	
	Особенности вентиляционных установок Kentatsu STORMANN	
	Оборудование для чистых помещений (гигиеническое исполнение)	
	Установки с газовым нагревом	
	Установки для АЭС и других объектов с повышенными требованиями к сейсмоустойчивости	105
	Установки во взрывозащищенном исполнении	
	Установки в подвесном исполнении	
	Установки в исполнении, устойчивом к химически агрессивным средам	106
	Вентиляционное оборудование серии «КОМФОРТ»	
	Диапазоны работы	
	Моноблочные бескаркасные энергосберегающие вентиляционные установки	
	Секционные приточно-вытяжные установки КК013-080	110

Гидравлические компоненты для чиллеров.......111

🗱 НАДЕЖНО. РАЦИОНАЛЬНО. НИЧЕГО ЛИШНЕГО.

Мы уверены в качестве нашего оборудования. А также в том, что техника Kentatsu будет иметь только действительно необходимые пользователю функции.

Бренд Kentatsu представлен на российском рынке с 2005 года: именно в этом году в ассортименте «Даичи», одного из крупнейших дистрибьюторов климатической техники, появилась первая настенная сплит-система Kentatsu. За 13 лет бытовое, коммерческое и промышленное оборудование Kentatsu прочно заняло место на рынке и заслужило репутацию надежного и качественного решения, в основе которого лежат только действительно востребованные рабочие функции и понятные технические преимущества.


Компания руководствуется принципом разумной достаточности: умение сосредоточиться на главном позволило Kentatsu предложить потребителям качественные решения в области кондиционирования на оптимальных условиях. Вся продукция Kentatsu разрабатывается так, чтобы в наибольшей степени соответствовать реальным потребностям пользователя: быть экономичной, удобной в эксплуатации, а главное – создавать идеальный комфорт в любом помещении.

Основное направление работы компании Kentatsu – кондиционеры воздуха бытового, коммерческого и промышленного назначения: сплит- и мультисплит-системы, полупромышленные кондиционеры, центральные многозональные системы типа VRF – Kentatsu DX PRO, фанкойлы.

Компания Kentatsu размещает заказы на производство своего оборудования на заводах Европы и Азии. Под торговой маркой Kentatsu Stormann Aero на европейском заводе (Чехия) также производятся современные вентиляционные установки производительностью 800-85000 м³/ч. Доступны все специальные исполнения, возможность оснащения газовыми нагревателями, встроенными холодильными машинами и т. д. С 2014 года Kentatsu занимается поставкой гидравлических компонентов для систем с чиллерами (буферных баков и гидромодулей) итальянского производства. Более двух лет компания Kentatsu представляет на российском рынке современный модельный ряд отопительного оборудования: котлы различных типов, горелки и радиаторы отопления. Идя в ногу со временем и соответствуя новым условиям рынка, в 2016 году компания Kentatsu начала производство российских вентиляционных установок различных серий в моноблочном с эффективными ЕС-вентиляторами и в секционном исполнении, производительностью 500-90000 м³/ч.

❖ ОБОЗНАЧЕНИЕ МОДЕЛЕЙ КЛИМАТИЧЕСКОЙ TEXHИКИ KENTATSU

❖ КЛИМАТИЧЕСКАЯ ТЕХНИКА KENTATSU, ПРЕДСТАВЛЕННАЯ В КАТАЛОГЕ

C							Инде	ксы г	роиз	води	тель	ності	1					C
Сплит-систем	1Ы	21	26	35	53	61	70	80	95	105	120	140	176	240	280	440	560	Стр
	KSGX_HF , Titan Genesis настенный тип		¢	្	•		្											8
2.4	KSGMA_HF(HZ) , Mark II настенный тип	:	:	:	:		:	:										10
NE	W KSGB_HF(HZ) , Bravo настенный тип	•	٠	•	•		۵											12
	KSGR_H(HZ), Rio настенный тип	:	•	•	:		:											14
	KSGN_H , Naomi настенный тип									•								16
NEV					‡ NEW		‡‡ NEW			:		‡‡ NEW	‡‡ NEW					2
	KSTV_H, KSTU_H, канальный тип высоконапорный						្			្		•	េ					2
	КЅТU_Н канальный тип высоконапорный													:	:	:	:	2
	KSZT_H кассетный тип (600х600)			٠	•													3
	KSVR_H, KSVQ_H, кассетный тип четырехпоточный				٠					:		:	:					3
	КЅНV_H, КЅНЕ_H, универсальный тип			:						٠		:	្					3-
-	KSFW_X, KSFV_X напольный тип						•				125	•						3

Myri Tiachriat Ciactoral								Ин	дек	сы п	роиз	воді	ител	ьно	сти							CTD
Мультисплит-системь	ol .	35	40	50	53	60	71	80	100	120	160	220	280	300	350	450	530	600	700	880		Стр
	K2(3,4,5)MRE(F) , DC-инверторная мультисистема		‡‡ NEW	•		•		:	•	:		1										18
Промышленные конд	иционеры					*******		*						*					*			
КННА_СF компрессорно-конденсатор	оные блоки	:			٠		:		105	:	٠	•	•		‡	:	•	610	٠		•	38
KRFN_C(H) крышный кондиционер												:	:	:	:	440	:	‡	‡	:	:	39

Центральные систем	ЛЫ							Ин	ідек	сы п	рои	звод	ците	льн	ости	(HP)						Стр.
кондиционирования	a DX PRO	4	5	6	6.5	7	8	9	10	12	14	16	18	19	20	22	24	26	28	30	32	Max.	Cip.
DX PRO V	KTRV_HZ-B						#		#	*	\$	\$	\$		\$	#						88	43
DV DDO IV	KTRZ_HZ						#		*	₽	*	#	*									72	55
DX PRO IV	KTRZ_HZ-TB						#		*	₽	#	#	‡									72	55
DX PRO IV с рекуперацией тепла	KURZ_HZ						‡		‡	::	‡	‡										64	64
DX PRO IV индивидуальные	KTRZ_HZ										‡	‡			‡	‡	:	‡	‡	‡	‡		67
DX PRO mini	KTRZ_HZ	*	:	*																			68
DX PRO mini	KTRY_HZ	*	:	::	:																		68
DX PRO Compact	KTRY_HZ					*	#	*			*	‡											68
DX PRO W с водяным охлаждением	KTWY_HZ						‡ :		:	₽												36	69

Внутренние блоки							Инд	ексь	прс	изво	одит	ельн	ОСТИ	1						CTD
системы DX PRO	18	24	30	40	50	60	72	80	90	115	125	140	160	200	250	280	400	450	560	Стр.
КТGZ_HF, настенный тип		\$	\$	\$	\$	\$	\$	\$												71
КТGY_HF, настенный тип							:													72
КТҮҮ_НF, кассетный тип однопоточный		:	:	:	::	:	:													73
КТZY_HF, кассетный тип (600х600)		*	:	:	::	‡														74
КТVY_HF, кассетный тип четырехпоточный			:	:	₽	‡	:		::	::		₽								75
KTLZ(A)_HF, канальный тип низконапорный NEW	:	‡	₽	:																76
КТКХ_НF, канальный тип средненапорный				:	:	:	:		:	:		*								77
КТКZA_HF, канальный тип средненапорный NEW		‡	₽	:	:	‡	:		:	:		‡								78
КТТХ_НF, канальный тип высоконапорный							:		•	•		*	‡	:	:	‡	*	:	‡	80
КТТҮ_HF, канальный тип высоконапорный											:	‡		‡	‡	‡				81
КТНХ_НF, универсальный тип				:	•	‡	:		•	•		•	:							82

Фанкойлы 2-трубные							Ин	дек	сы п	роиз	вод	ител	1ЬНО	сти							Стр.
Фанкоилы 2-труоные	12	20	25	27	30	33	38	42	48	50	57	65	70	78	89	112	120	140	158	200	
КFZF_H, кассетный тип (600х600)		*	:		\$		*		*		:										93
КFVE_H, кассетный тип четырехпоточный											*		::	*	**	:		₽			95
КFKD_H, канальный тип средненапорный		*			‡		*		*		::		‡		*	:		#			97
КFTE_H, канальный тип высоконапорный														*	*	:	::	‡	‡	::	99
KFGA_H, KFGB_H, настенный тип		::		‡	‡	::		::	::	::											100
КFHD_H, КFHE_H, напольно-потолочный тип	:	:	:		::		#		*		#	#		::							102

Фанкойлы 4-трубные						Инде	ексы г	произ	води	тельн	ности						Стп
	20	25	27	30	32	35	38	43	50	60	62	67	78	93	105	115	Cip.
KQZF_H, кассетный тип (600х600)		‡		‡	‡	•											94
KQVE_H, кассетный тип четырехпоточный									₽	‡	‡	₽		‡	‡		96
КQKD_H, канальный тип средненапорный	*		*				‡	\$	₽			\$	#		#	‡	98

Центральные кондиционеры Kentatsu Stormann Aero	Производительность (м³/ч)	Стр.
KVSA, KVSE	800~110000	103

Центральные кондиционеры Kentatsu «Комфорт»	Производительность (м³/ч)	Стр.
KK	500~90000	107

Гидравлические компоненты для чиллеров		Стр.
Буферные баки системы холодоснабжения	100 ~ 5000 л	111
Гидравлические модули		111

■ ДВА ЦВЕТА ВНУТРЕННЕГО БЛОКА

графитовый (BL) и золотой (GL).

■ КЛАСС ЭНЕРГОЭФФЕКТИВНОСТИ «А»

Прибор данного класса потребляет минимум электроэнергии и отвечает современным требованиям по энергоэффективности.

■ МОИ ПРЕДПОЧТЕНИЯ

Функция сохранения в памяти и восстановления одним нажатием кнопки набора желаемых параметров работы: режима, температуры, скорости вентилятора, положения или качания заслонки, работу в «ночном режиме».

■ ФУНКЦИЯ «НЕ БЕСПОКОИТЬ»

Функция отключения боковой подсветки, дисплея и звуковых сигналов. Возможен автоматический (реакция на выключение/ включение освещения) и ручной вариант (с пульта управления).

■ ФИЛЬТР ВЫСОКОЙ ПЛОТНОСТИ

Фильтр имеет ячейки размером менее 500 мкм, вследствие чего задерживается на 80% больше пыли и пыльцы, чем обычным предварительным фильтром.

■ КАТАЛИТИЧЕСКИЙ ФИЛЬТР

Фильтр тонкой очистки воздуха с содержанием оксида титана эффективно очищает воздух от запахов.

■ АВТОМАТИЧЕСКОЕ КАЧАНИЕ ЗАСЛОНОК

Функция обеспечивает поддержание уровня комфорта, соответствующего запросам пользователя.

МОДЕЛЬНЫЙ РЯД

KSGX26/35/53/70HFAN1-BL KSGX26/35/53/70HFAN1-GL

ПУЛЬТ УПРАВЛЕНИЯ

KIC-80H

НАРУЖНЫЙ БЛОК

KSRX26HFAN1

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSGX26HFAN1-BL(-GL)	KSGX35HFAN1-BL(-GL)	KSGX53HFAN1-BL(-GL)	KSGX70HFAN1-BL(-GL)
НАРУЖНЫЙ БЛОК			KSRX26HFAN1	KSRX35HFAN1	KSRX53HFAN1	KSRX70HFAN1
	кВт	Охлаждение	2.64	3.52	5.28	7.03
Производительность	КВТ	Нагрев	2.78	3.96	5.57	7.62
Электропитание	В, Гц, Ф	Однофазное		220~24	10, 50, 1	
D6	кВт	Охлаждение	0.82	1.10	1.64	2.34
Потребляемая мощность	КВТ	Нагрев	0.77	1.10	1.54	2.24
Энергоэффективность/Класс		Охлаждение (EER)	3.21/A	3.21/A	3.21/A	3.01/B
энергоэффективность/класс	-	Нагрев (СОР)	3.61/A	3.61/A	3.61/A	3.41/B
Годовое энергопотребление	кВт∙ч	Среднее значение	411	548	822	1169
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	450/362/276	550/400/310	710/625/543	1092/834/734
Интенсивность осушки воздуха	л/ч	Среднее значение	1.0	1.2	1.8	2.4
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	33/29/27	36.5/29/27	39/35/31	44/38/33.5
Габариты (ШхВхГ)		Внутренний блок	897x312x182	897x312x182	1004x350x205	1130x368x218
гаоариты (шхвхг)	MM	Наружный блок	700x550x275	770x555x300	770x555x300	845x702x363
D		Внутренний блок	9.9	10.3	13.6	16.9
Bec	КГ	Наружный блок	26.4	30.1	36.5	47.8
		Диаметр для жидкости	6.35	6.35	6.35	9.52
Трубопровод хладагента	MM	Диаметр для газа	9.52	12.7	12.7	15.9
(R410A)		Длина между блоками	20	20	25	25
	М	Перепад между блоками	8	8	10	10
Диапазон рабочих	°C	Охлаждение		18-	~43	
температур		Нагрев		-7~	-24	

‡ СПЛИТ-СИСТЕМА

KSGMA_HZA, KSGMA_HFA

MARK II

☆ KENTATSU

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / НАГРЕВ **INVERTER**

ВНУТРЕННИЙ БЛОК			KSGMA21HZAN1	KSGMA26HZAN1	KSGMA35HZAN1	KSGMA53HZAN1	KSGMA70HZAN1		
НАРУЖНЫЙ БЛОК			KSRMA21HZAN1	KSRMA26HZAN1	KSRMA35HZAN1	KSRMA53HZAN1	KSRMA70HZAN1		
	кВт	Охлаждение	2.64 (1.23~3.31)	2.64 (1.23~3.31)	3.52 (1.29~4.45)	5.28 (1.82~6.13)	7.03 (2.67~7.88)		
Производительность	KBT	Нагрев	2.93 (0.85~3.72)	2.93 (0.85~3.72)	3.81 (1.20~4.87)	5.57 (1.38~6.74)	7.33 (1.61~8.79)		
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1						
Потребляемая мощность	кВт	Охлаждение	0.80 (0.10~1.27)	0.80 (0.10~1.27)	1.17 (0.10~1.71)	1.63 (0.14~2.36)	2.60 (0.24~3.03)		
потреоляемая мощность	KDI	Нагрев	0.91 (0.13~01.33)	0.91 (0.13~01.33)	1.12 (0.18~1.74)	1.54 (0.20~2.41)	2.32 (0.26~3.14)		
Сезонная энергоэффективность		Охлаждение (SEER)	6.9/A++	6.9/A++	6.8/A++	6.5/A++	6.3/A++		
/ Класс	-	Нагрев (SCOP)	4.0/A+	4.0/A+	4.4/A+	4.2/A+	4.0/A+		
Энергоэффективность/Класс	-	Охлаждение (EER)	3.30/A	3.30/A	3.01/B	3.24/A	2.70/D		
		Нагрев (СОР)	3.21/C	3.21/C	3.41/C	3.62/A	3.15/D		
Годовое энергопотребление	кВт•ч	Среднее значение	400	400	586	817	1302		
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	430/320/230	430/320/230	485/390/310	610/460/360	960/820/650		
Уровень шума (выс./сред./низ./тих.)	дБА	Внутренний блок	40/34/29.5/22.5	40/34/29.5/22.5	41/36/28/23	42/37/33/23.5	45/39/34/25		
Габариты (ШхВхГ)	мм	Внутренний блок	715x250x188	715x250x188	800x275x188	940x275x205	1045x315x235		
таоариты (шхохг)	IVIIVI	Наружный блок	770x555x300	770x555x300	800x554x333	800x554x333	845x702x363		
Bec	КГ	Внутренний блок	6.5	6.5	7.4	9	12		
Бес	KI	Наружный блок	26.6	26.6	29.1	37.8	48.4		
	мм	Диаметр для жидкости	6.35	6.35	6.35	6.35	9.52		
Трубопровод хладагента	MM	Диаметр для газа	9.52	9.52	9.52	12.7	15.9		
(R410A)		Длина между блоками	25	25	25	30	50		
	М	Перепад между блоками	10	10	10	20	25		
Диапазон рабочих	۰,	Охлаждение			-15~50				
температур	°C	Нагрев			-15~30				

■ ЭНЕРГОЭФФЕКТИВНОСТЬ ОБОРУДОВАНИЯ КЛАССА «А»

Прибор данного класса потребляет минимум электроэнергии и отвечает современным требованиям по энергоэффективности.

■ КАТАЛИТИЧЕСКИЙ ФИЛЬТР

Фильтр тонкой очистки воздуха с содержанием оксида титана эффективно очищает воздух от запахов.

■ ФУНКЦИЯ «КОМФОРТНЫЙ СОН»

Позволяет создать комфортные условия во время сна, также снижает уровень шума.

■ ФУНКЦИЯ ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИИ

Позволяет снизить разницу температуры воздуха в верхней и нижней зоне помещения.

■ ФУНКЦИЯ ЗАПОМИНАНИЯ ПОЛОЖЕНИЯ ЗАСЛОНКИ

При включении блока заслонка возвращается в положение, в котором она была до выключения.

■ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ СКРЫТОГО ТИПА

Ненавязчиво отображает заданную температуру и значение времени по таймеру, индикаторы сообщают о работе по таймеру и режиме оттаивания наружного блока.

МОДЕЛЬНЫЙ РЯД

KSGMA21/26/35/53/70HZAN1 KSGMA21/26/35/53/70/80HFAN1

ПУЛЬТ УПРАВЛЕНИЯ **КІС-81H**

НАРУЖНЫЙ БЛОК **KSRMA70HZAN1**

OXЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSGMA21HFAN1	KSGMA26HFAN1	KSGMA35HFAN1	KSGMA53HFAN1	KSGMA70HFAN1	KSGMA80HFAN1
НАРУЖНЫЙ БЛОК			KSRMA21HFAN1	KSRMA26HFAN1	KSRMA35HFAN1	KSRMA53HFAN1	KSRMA70HFAN1	KSRMA80HFAN1
-		Охлаждение	2.05	2.64	3.52	5.28	7.03	7.91
Производительность	кВт	Нагрев	2.20	2.78	3.66	5.57	7.62	8.79
Электропитание	В, Гц, Ф	Однофазное			220~24	10, 50, 1		
	кВт	Охлаждение	0.64	0.82	1.10	1.64	2.50	2.82
Потребляемая мощность	KBT	Нагрев	0.61	0.77	1.02	1.54	2.37	2.92
Энергоэффективность/Класс		Охлаждение (EER)	3.21/A	3.21/A	3.21/A	3.21/A	2.81/C	2.81/C
	-	Нагрев (СОР)	3.61/A	3.61/A	3.61/A	3.61/A	3.21/C	3.01/D
Годовое энергопотребление	кВт•ч	Среднее значение	320	411	548	722	1252	1408
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	431/309/236	486/365/273	578/487/366	799/664/442	1077/991/773	1085/958/854
Интенсивность осушки воздуха	л/ч	Среднее значение	0.8	1.0	1.2	1.8	2.4	2.8
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	36/32/27	40/33/26	41/36/31	43/38/33	47/40/34	48/45/42
F.C. (III.D.F)		Внутренний блок	715x250x188	715x250x188	800x275x188	940x275x205	1045x315x235	1045x315x235
Габариты (ШхВхГ)	MM	Наружный блок	700x500x275	700x550x275	770x555x300	770x555x300	845x702x363	845x702x363
		Внутренний блок	6.9	6.9	8	10	12.7	13.1
Bec	КГ	Наружный блок	23.7	26.4	30.1	36.5	49	53.3
		Диаметр для жидкости	6.35	6.35	6.35	6.35	9.52	9.52
Трубопровод хладагента	MM	Диаметр для газа	9.52	9.52	12.7	12.7	15.9	15.9
(R410A)		Длина между блоками	20	20	20	25	25	25
	М	Перепад между блоками	8	8	8	10	10	10
Диапазон рабочих		Охлаждение			18-	~43	•	
температур	°C	Нагрев			-7-	~24		-

KSGB_HZA, KSGB_HFA

NEW

BRAVO

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / НАГРЕВ

INVERTER

ВНУТРЕННИЙ БЛОК			KSGB26HZAN1	KSGB35HZAN1	KSGB53HZAN1	KSGB70HZAN1		
НАРУЖНЫЙ БЛОК			KSRB26HZAN1	KSRB35HZAN1	KSRB53HZAN1	KSRB70HZAN1		
-	_	Охлаждение	2.64 (1.03~3.22)	3.52 (1.08~4.10)	5.28 (1.82~6.13)	7.03 (2.67~7.88)		
Производительность	кВт	Нагрев	2.93 (0.82~3.37)	3.81 (0.88~4.22)	5.57 (1.38~6.74)	7.33 (1.61~8.79)		
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1					
Пб	кВт	Охлаждение	0.77 (0.10~1.24)	1.30 (0.10~1.58)	1.64 (0.14~2.36)	2.34 (0.24~3.03)		
Потребляемая мощность	KBT	Нагрев	0.77 (0.12~1.20)	1.19 (0.10~1.58)	1.59 (0.20~2.41)	2.28 (0.26~3.14)		
Сезонная энергоэффективность	_	Охлаждение (SEER)	6.1/A++	6.1/A++	6.7/A++	6.1/A++		
/ Класс	-	Нагрев (SCOP)	4.0/A+	4.0/A+	4.1/A+	4.0/A+		
Энергоэффективность/Класс	-	Охлаждение (EER)	3.41/A	2.71/D	3.21/A	3.00/C		
энергоэффективность/класс		Нагрев (СОР)	3.81/A	3.21/C	3.51/B	3.21/C		
Годовое энергопотребление	кВт•ч	Среднее значение	505	650	820	1170		
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	420/320/270	570/470/370	840/680/540	980/800/640		
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	40/34/23	41/36/23	43/37/24	45/39/25		
Габариты (ШхВхГ)		Внутренний блок	715x285x194	805x285x194	957x302x213	1040×327×220		
таоариты (шхвхг)	ММ	Наружный блок	770x555x300	770x555x300	800x554x333	845x702x363		
Bec		Внутренний блок	6.8	7.2	10.5	11.9		
вес	КГ	Наружный блок	25.2	25.5	35.1	48.4		
		Диаметр для жидкости	6.35	6.35	6.35	9.52		
Трубопровод хладагента	MM	Диаметр для газа	9.52	9.52	12.7	15.9		
(R410A)		Длина между блоками	25	25	30	50		
	М	Перепад между блоками	10	10	20	25		
Диапазон рабочих	۰,	Охлаждение		-15	~50			
температур	°C	Нагрев		-15	~30			

■ ЭНЕРГОЭФФЕКТИВНОСТЬ КЛАССА «А»

Гарантирует низкий уровень потребления электроэнергии.

■ ФИЛЬТР ВЫСОКОЙ СТЕПЕНИ ОЧИСТКИ

Эффективно задерживает пыль и пыльцу.

■ КОМФОРТНЫЙ СОН

Температура автоматически изменяется для большего комфорта спящего человека. Функция обеспечивает энергосбережение.

■ ЗАПОМИНАНИЕ ПОЛОЖЕНИЯ ЗАСЛОНКИ

Кондиционер начинает работу с тем положением заслонки, которое было до выключения.

■ ОТКЛЮЧЕНИЕ СВЕЧЕНИЯ ДИСПЛЕЯ

Дисплей отключается пультом управления.

■ОБОГРЕВ ДО 8 °C

Во время длительного отсутствия людей в холодное время в помещении во избежание его замораживания поддерживается температура около 8 °C

■ АВТОМАТИЧЕСКАЯ ОЧИСТКА ИСПАРИТЕЛЯ

Автоматическая очистка испарителя внутреннего блока исключает образование плесени и неприятных запахов.

■ ЛОКАЛЬНЫЙ МИКРОКЛИМАТ

Желаемые параметры микроклимата устанавливаются в месте расположения пульта дистанционного управления.

■ТИХАЯ РАБОТА КОНДИЦИОНЕРА

Нажатие соответствующей кнопки снижает частоту оборотов компрессора и вентиляторов наружного и внутреннего блоков и уменьшает уровень рабочего шума.

МОДЕЛЬНЫЙ РЯД

KSGB26/35/53/70HZAN1 KSGB21/26/35/53/70HFAN1

ПУЛЬТ УПРАВЛЕНИЯ **КІС-85Н**

НАРУЖНЫЙ БЛОК

KSRB70HZAN1

ОХЛАЖДЕНИЕ / НАГРЕВ О О О О О Г

ВНУТРЕННИЙ БЛОК			KSGB21HFAN1	KSGB26HFAN1	KSGB35HFAN1	KSGB53HFAN1	KSGB70HFAN1
НАРУЖНЫЙ БЛОК			KSRB21HFAN1	KSRB26HFAN1	KSRB35HFAN1	KSRB53HFAN1	KSRB70HFAN1
-		Охлаждение	2.2	2.64	3.52	5.28	7.03
Производительность	кВт	Нагрев	2.34	2.78	3.81	5.57	7.33
Электропитание	В, Гц, Ф	Однофазное			220~240, 50, 1		
П	кВт	Охлаждение	0.68	0.82	1.09	1.64	2.5
Потребляемая мощность	KBT	Нагрев	0.65	0.77	1.05	1.54	2.28
Duonsoad dougrapuo era /Krase		Охлаждение (EER)	3.21/A	3.21/A	3.21/A	3.21/A	2.81/ C
Энергоэффективность/Класс	-	Нагрев (СОР)	3.61/A	3.61/A	3.61/A	3.61/A	3.21/C
Годовое энергопотребление	кВт•ч	Среднее значение	340	410	545	820	1250
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	422/375/302	510/380/338	568/440/352	820/665/543	1000/796/640
Интенсивность осушки воздуха	л/ч	Среднее значение	0.6	0.8	1.2	1.8	1.8
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	36/32/27	40/33/26	41/36/31	43/38/33	47/40/34
Γ-6 (UI-D-Γ)		Внутренний блок	715x285x194	715x285x194	805x285x194	957x302x213	1040x327x220
Габариты (ШхВхГ)	MM	Наружный блок	700x550x270	700x550x270	770x555x300	770x555x300	845x702x363
D		Внутренний блок	7.1	7.5	8.1	10.5	13.2
Bec	КГ	Наружный блок	25.3	26.4	30.8	36.6	48.8
		Диаметр для жидкости	6.35	6.35	6.35	6.35	9.52
Трубопровод хладагента	MM	Диаметр для газа	9.52	9.52	12.7	12.7	15.9
(R410A)		Длина между блоками	20	20	20	25	25
	М	Перепад между блоками	8	8	8	10	10
Диапазон рабочих	∘c	Охлаждение			18~43		-
температур	"(Нагрев			-7~24		

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ INVERTER

ВНУТРЕННИЙ БЛОК			KSGR21HZAN1	KSGR26HZAN1	KSGR35HZAN1		
НАРУЖНЫЙ БЛОК			KSRR21HZAN1	KSRR26HZAN1	KSRR35HZAN1		
	кВт	Охлаждение	2.2 (1.30~3.00)	2.65 (1.45~3.20)	3.20 (1.29~4.45)		
Производительность	KBT	Нагрев	2.3 (1.35~3.30)	2.70 (1.40~3.30)	3.50 (1.10~3.75)		
Электропитание	В, Гц, Ф	Однофазное		220~240, 50, 1			
Потребляемая мощность	кВт	Охлаждение	0.68 (0.16~0.95)	0.82 (0.38~1.35)	1.00 (0.45~1.50)		
потреоляемая мощность	KDI	Нагрев	0.64 (0.27~0.88)	0.75 (0.38~1.54)	0.97 (0.40~1.35)		
Энергоэффективность/Класс		Охлаждение (EER)	3.31/A	3.21/A	3.21/A		
энергоэффективность/класс	-	Нагрев (СОР)	3.61/A	3.61/A	3.61/A		
Годовое энергопотребление	кВт∙ч	Среднее значение	340	500			
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	420/370/320	480/420/380			
Интенсивность осушки воздуха	л/ч	Среднее значение	0.8	0.8	1.1		
Уровень шума (выс./сред./низ./тих.)	дБА	Внутренний блок	33/29/27/24	33/29/27/24	33/29/27/24		
Габариты (ШхВхГ)		Внутренний блок	690x283x199	690x283x199	690x283x199		
гаоариты (шхвхг)	ММ	Наружный блок	710x500x240	720x540x260	720x540x260		
D		Внутренний блок	8	7.6	8		
Bec	КГ	Наружный блок	23	25	27		
		Диаметр для жидкости		6.35			
Трубопровод хладагента	MM	Диаметр для газа		9.52			
(R410A)		Длина между блоками		20			
	М	Перепад между блоками	8				
Диапазон рабочих	°C	Охлаждение		17~43			
температур	ا در	Нагрев		-15~32			

■ СОВРЕМЕННЫЙ ДИЗАЙН

Лаконичный современный дизайн лицевой панели со скрытым цифровым дисплеем.

■ КЛАСС ЭНЕРГОЭФФЕКТИВНОСТИ «А»

Прибор данного класса потребляет минимум электроэнергии, что отвечает современным требованиям по энергоэффективности.

■ ФУНКЦИЯ «КОМФОРТНЫЙ СОН»

Позволяет создать комфортные условия во время сна, также снижает уровень шума.

■ НИЗКИЙ УРОВЕНЬ ШУМА

Невысокий уровень шума достигается благодаря наличию вентилятора большого диаметра, работающего на малых скоростях.

■ СДВОЕННЫЕ ЗАСЛОНКИ ВНУТРЕННЕГО БЛОКА

Благодаря данной конструкции обеспечивается объемный воздушный поток и равномерное кондиционирование помещения.

■ ДВА НАПРАВЛЕНИЯ ВОЗДУШНОГО ПОТОКА

Во время работы на охлаждение воздушный поток может быть направлен вдоль потолка, а при обогреве – вертикально вниз, чтобы исключить неприятные ощущения у пользователя.

В РАБОТА ПРИ ПОНИЖЕННОМ НАПРЯЖЕНИИ ПИТАНИЯ

Кондиционер может начать работу и долго стабильно работать при снижении напряжения в электрической сети вплоть до 187 В.

■ ДАТЧИК УТЕЧКИ ХЛАДАГЕНТА

При обнаружении утечки хладагента пользователь будет извещен об этом аварийным сигналом.

МОДЕЛЬНЫЙ РЯД

KSGR21/26/35HZAN1 KSGR21/26/35/53/70HFAN1

ПУЛЬТ УПРАВЛЕНИЯ **КІС-90Н**

НАРУЖНЫЙ БЛОК **KSRR21HZAN1**

☆TEXHИЧЕСКИЕ ХАРАКТЕРИСТИКИ

OXЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSGR21HFAN1	KSGR26HFAN1	KSGR35HFAN1	KSGR53HFAN1	KSGR70HFAN1		
НАРУЖНЫЙ БЛОК			KSRR21HFAN1	KSRR26HFAN1	KSRR35HFAN1	KSRR53HFAN1	KSRR70HFAN1		
	кВт	Охлаждение	2.10	2.65	3.55	5.30	7.00		
Производительность	КВТ	Нагрев	2.20	2.70	3.65	5.54	7.10		
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1						
Потребляемая мощность	кВт	Охлаждение	0.65	0.82	1.11	1.65	2.32		
потреоллемал мощноств	KDI	Нагрев	0.61	0.75	1.01	1.51	2.21		
Энергоэффективность/Класс	_	Охлаждение (EER)	3.21/A	3.21/A	3.21/A	3.21/A	3.01/B		
энергоэффективность/класс	_	Нагрев (СОР)	3.61/A	3.61/A	3.61/A	3.61/A	3.21/C		
Годовое энергопотребление	кВт•ч	Среднее значение	Среднее значение 325.00 410.00 555.00		825.00	1160.00			
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	420/370/320	450/400/350	550/500/450	800/680/600	1050/930/810		
Интенсивность осушки воздуха	л/ч	Среднее значение	0.8	0.8	1.1	1.8	2.2		
Уровень шума (выс./сред./низ./тих.)	дБА	Внутренний блок	33/29/27/24	33/30/27/24	36/33/30/27	38/35/32/29	40/37/34/31		
Габариты (ШхВхГ)		Внутренний блок	690x283x199	690x283x199	750x285x200	900x310x225	900x310x225		
гаоариты (шхвхг)	MM	Наружный блок	663x421x254	663x421x254	710x500x240	795x525x290	800x690x300		
D.		Внутренний блок	8	8.5	9	11	12		
Bec	КГ	Наружный блок	20	21	25	37	39		
		Диаметр для жидкости	6.35	6.35	6.35	6.35	9.52		
Трубопровод хладагента	MM	Диаметр для газа	9.52	9.52	9.52	12.7	12.7		
(R410A)		Длина между блоками	20	20	20	25	25		
	М	Перепад между блоками	8	8	8	10	10		
Диапазон рабочих	0.0	Охлаждение			17~43				
температур	°C	Нагрев			-7~32				

■ НАСТЕННЫЙ КОНДИЦИОНЕР БЫТОВОЙ СЕРИИ БОЛЬШОЙ ПРОИЗВОДИТЕЛЬНОСТИ

Подходит для помещений площадью до 100 квадратных метров.

■ ФИЛЬТР ВЫСОКОЙ ПЛОТНОСТИ

Фильтр имеет ячейки размером менее 500 мкм, вследствие чего задерживается на 80% больше пыли и пыльцы, чем обычным предварительным фильтром.

■ ФУНКЦИЯ «НЕ БЕСПОКОИТЬ»

Функция отключения дисплея и звуковых сигналов.

■ ФУНКЦИЯ СНИЖЕНИЯ УРОВНЯ ШУМА И ЭКОНОМИИ ЭЛЕКТРОЭНЕРГИИ

■ ЗАПОМИНАНИЕ ПОЛОЖЕНИЯ ЖАЛЮЗИ

При включении блока горизонтальные жалюзи автоматически перемещаются в то же положение, в котором они находились до выключения.

■ КНОПКА ДЛЯ РУЧНОГО ВКЛЮЧЕНИЯ/ВЫКЛЮЧЕНИЯ

Включение или выключение кондиционера без пульта дистанционного управления.

■ ФУНКЦИЯ ОБНАРУЖЕНИЯ УТЕЧКИ ХЛАДАГЕНТА

Внутренний блок сигнализирует в случае обнаружения утечки хладагента.

МОДЕЛЬНЫЙ РЯД

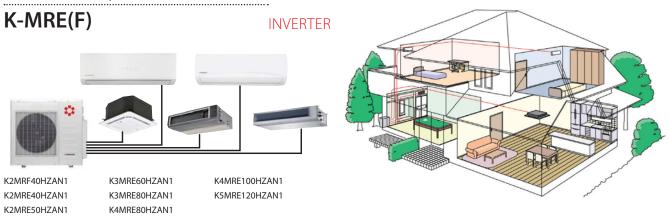
KSGN105HFAN1 KSGN105HFAN3

ПУЛЬТ УПРАВЛЕНИЯ

KIC-80H

НАРУЖНЫЙ БЛОК

KSRN105HFAN3


☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

OXJAЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSGN105HFAN3	KSGN105HFAN1		
НАРУЖНЫЙ БЛОК			KSRN105HFAN3	KSRN105HFAN1		
	кВт	Охлаждение	10.55	9.96		
Производительность	KBT	Нагрев	11.14	10.84		
Электропитание	В, Гц, Ф	Трехфазное	380~420, 50, 3	220~240, 50, 1		
Потребляемая мощность	кВт	Охлаждение	3.51	3.12		
потреоляемая мощность	КВТ	Нагрев	3.27	3.08		
Энергоэффективность/Класс		Охлаждение (EER)	3.01/B	3.19/B		
энергоэффективность/класс	-	Нагрев (СОР)	3.41/B	3.52/B		
Годовое энергопотребление	кВт•ч	Среднее значение	1753	1560		
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	1459/1280/1037	1370/1200/980		
Интенсивность осушки воздуха	л/ч	Среднее значение	3.0	3.0		
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	49/44/39	51/47/42		
F-6 (III-D-F)		Внутренний блок	1260x362x282	1260x362x283		
Габариты (ШхВхГ)	ММ	Наружный блок	946x810x410	1048x810x455		
D.		Внутренний блок	21.3	21.8		
Bec	КГ	Наружный блок	71.3	70		
		Диаметр для жидкости	9.	52		
Трубопровод хладагента	MM	Диаметр для газа	15	5.9		
(R410A)		Длина между блоками	30	25		
	М	Перепад между блоками	15	10		
Диапазон рабочих		Охлаждение	18~43			
температур	°€	Нагрев	-7~	-24		

DC-инверторная мультисистема со свободной комбинацией внутренних блоков пополнилась новым наружным блоком серии K-MRF и новыми внутренними блоками. К системе можно подключить до пяти внутренних блоков в любой комбинации.

Максимальная производительность мультисистемы – 12.3 кВт. Благодаря DC-инверторному управлению двигателем компрессора система экономично и надежно поддерживает индивидуальный комфорт.

Внутренние блоки одновременно могут работать только в одном режиме – охлаждения или нагрева, но в каждом помещении можно задавать и поддерживать индивидуальные параметры воздуха.

Современные технологии позволяют использовать мультисистемы в широком диапазоне рабочих температур при охлаждении (от -15 до 50 °C). При этом диапазон рабочих температур при обогреве составляет от -15 до 24 °C. Максимальная длина трубопровода может достигать 75 м.

K2(3,4,5)MRE

НАРУЖНЫЙ БЛОК (число вн	утренн	их блоков)	K2MRF40HZAN1 (2)	K2MRE40HZAN1 (2)	K2MRE50HZAN1 (2)	K3MRE60HZAN1 (3)		
D	кВт	Охлаждение	4.1	4.1	5.28	6.15		
Производительность	KBT	Нагрев	4.4	4.4	5.57	6.59		
Электропитание	В, Гц, Ф	Однофазное		220~24	10, 50, 1			
Потпобласила моницости	кВт	Охлаждение	1.35	1.35	1.64	1.92		
Потребляемая мощность к	KDI	Нагрев	1.12	1.12	1.54	1.83		
Эффективность/Класс		Охлаждение (EER)	3.04/B	3.04/B	3.21/A	3.21/A		
эффективность/класс		Нагрев (СОР)	3.93/A	3.93/A	3.61/A	3.61/A		
Уровень шума	дБА	Наружный блок	54	54	56.5	57.5		
Габариты (ШхВхГ)	MM	Наружный блок		800x554x333		845x702x363		
Bec	КГ	Наружный блок	31.5	31.5	36	47		
		Диаметр для жидкости	2 x 6.35	2 x	6.35	3 x 6.35		
Трубопровод хладагента	MM	Диаметр для газа	2 x 9.52	2 x	9.52	3 x 9.52		
(R410A)		Сумма/макс.расстояние*	40/25	40	30/20	45/25		
	М	Перепад между блоками		15 (наружный блок выше)	/ 10 (наружный блок ниже)			
Диапазон рабочих температур	°C	В помещении	17~30					
Диапазон рабочих температур	°C	Охлаждение		-15	~50			
наружного воздуха		Нагрев		-15	~24			

НАРУЖНЫЙ БЛОК (число вн	нутренн	их блоков)	K3MRE80HZAN1 (3)	K4MRE80HZAN1 (4)	K4MRE100HZAN1 (4)	K5MRE120HZAN1 (5)	
D	кВт	Охлаждение	7.91	8.21	10.55	12.31	
Производительность	KBT	Нагрев	8.21	8.79	11.14	12.31	
Электропитание	В, Гц, Ф	Однофазное		220~240, 50, 1			
		Охлаждение	2.47	2.56	3.51	3.82	
Потребляемая мощность	кВт	Нагрев	2.27	2.44	3.27	3.37	
211		Охлаждение (EER)	3.21/A	3.21/A	3.01/B	3.22/A	
Эффективность/Класс		Нагрев (СОР)	3.61/A	3.61/A	3.41/B	3.65/A	
Уровень шума	дБА	Наружный блок	59.5	61	63.5	62	
Габариты (ШхВхГ)	MM	Наружный блок	845x702x363		946x810x410		
Bec	КГ	Наружный блок	52.7	67.6	70	76	
	мм	Диаметр для жидкости	3 x 6.35	4 x	4 x 6.35		
Трубопровод хладагента	MM	Диаметр для газа	3 x 9.52	3 x 9.52	+ 1 x 12.7	4 x 9.52 + 1 x 12.7	
(R410A)		Сумма/макс.расстояние**	45/25	60/30	60/30	75/30	
	М	Перепад между блоками		15 (наружный блок выше)	/ 10 (наружный блок ниже)		
Диапазон рабочих температур	°C	В помещении		17-	~30		
Диапазон рабочих температур	۰٫	Охлаждение		-15	~50		
наружного воздуха	"	Нагрев		-15	~24		

^{*} Сумма длин трасс/максимальное расстояние до одного внутреннего блока.

🖒 DC-ИНВЕРТОРНАЯ МУЛЬТИСИСТЕМА KENTATSU СО СВОБОДНОЙ КОМБИНАЦИЕЙ ВНУТРЕННИХ БЛОКОВ

ВНУТРЕННИЙ БЛОК НАСТЕНН	ого тиг	IA	KMGBA25HZAN1	KMGBA35HZAN1	KMGBA50HZAN1	KMGBA70HZAN1	KMGMA50HZAN1
Производительность	кВт	Охлаждение/нагрев	2.64/2.93	3.52/3.81	5.28/5.57	7.03/7.33	5.28/5.57
Электропитание	В, Гц, Ф	Однофазное		220~24	10, 50, 1		220~240, 50, 1
Расход воздуха (макс./сред./мин.)	М³/Ч	-	420/320/270	610/-			
Уровень шума (выс./сред./низ.)	дБА	-	40/34/30/22	41/36/28/23	42.5/37/33/23	45/39/34/25	36/29/23
Габариты (ШхВхГ)	MM	-	715x285x195	805x285x195	958x302x213	1038x325x220	940x275x205
Bec	КГ	-	6.5	7.5	8.5	12	9
Трубопровод хладагента		Диаметр для жидкости	6.35	6.35	6.35	9.52	6.35
(R410A)	MM	Диаметр для газа	9.52	9.52	12.7	15.9	12.7
Пульт управления		ИК пульт		KIC-81H			

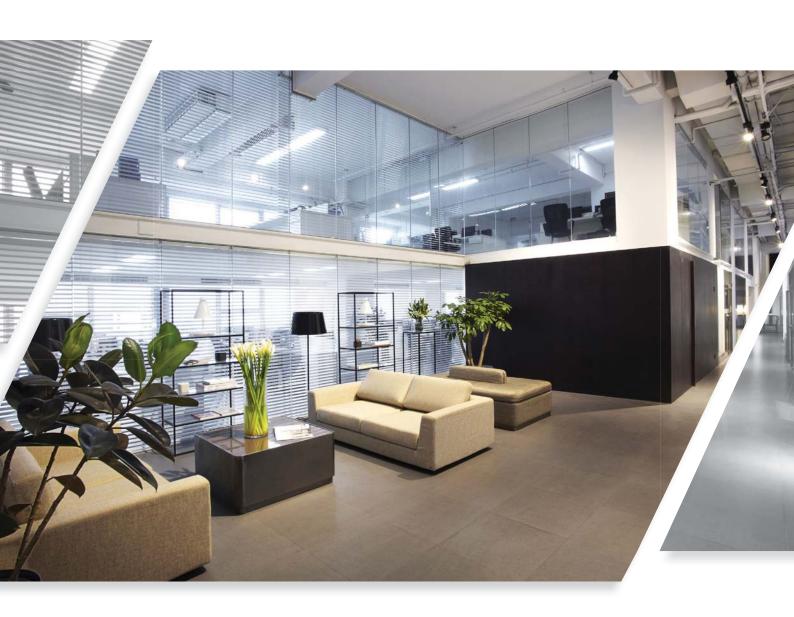
ВНУТРЕННИЙ БЛОК КАССЕТНО	ого тип	A (600x600)	KMZE20HZAN1	KMZE25HZAN1	KMZE35HZAN1	KMZF25HZAN1	KMZF35HZAN1	KMZF50HZAN1
ДЕКОРАТИВНАЯ ПАНЕЛЬ			KPU65-D	KPU65-D	KPU65-D	KPU65-D	KPU65-D	KPU65-D
Производительность	кВт	Охлаждение/нагрев	2.05/2.34	2.64/2.93	3.52/4.10	2.64/2.93	3.52/3.81	5.28/5.57
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1					
Расход воздуха (макс./сред./мин.)	М³/Ч	-	580/500/450	580/500/450	580/-	580/500/450	650/530/450	680/560/500
Уровень шума (выс./сред./низ.)	дБА	-	42/38/35	42/38/35	41/37/34	38/33/29	42/38/34	44/42/41
5.6 (11.0.5)		Внутренний блок	570x260x570	570x260x570	570x260x570	570x260x570	570x260x570	570x260x570
Габариты (ШхВхГ)	ММ	Декоративная панель	647x50x647	647x50x647	647x50x647	647x50x647	647x50x647	647x50x647
		Внутренний блок	14.5	14.5	16	14.7	14.4	16.1
Bec	КГ	Декоративная панель	2.6	2.6	2.6	2.5	2.5	2.5
Трубопровод хладагента		Диаметр для жидкости	6.35	6.35	6.35	6.35	6.35	6.35
(R410A)	ММ	Диаметр для газа	9.52	9.52	9.52	9.52	9.52	12.7
Пульт управления		Проводной		•	KW	C-32	•	•

ВНУТРЕННИЙ БЛОК КАНАЛЬНОГО ТИПА			KMKE25HZAN1	KMKE35HZAN1	KMKD50HZAN1		
Производительность	оизводительность кВт		2.64/2.93	3.52/3.81	5.28/5.86		
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1				
Расход воздуха (макс./сред./мин.)	м³/ч	-	530/400/340	530/400/340 680/580/450			
Внешнее статическое давление	Па	-	40 40		60		
Уровень шума (выс./сред./низ.)	дБА	-	35/31.5/28	42/38/35	46/42/40		
Габариты (ШхВхГ)	мм	-	700x210x635	700x210x635	920x210x635		
Bec	КГ	-	18.5	18.5	23		
Трубопровод хладагента	l	Диаметр для жидкости	6.35	6.35	6.35		
(R410A)	MM	Диаметр для газа	9.52	9.52	12.7		
Пульт управления		Проводной		KWC-32			

ВНУТРЕННИЙ БЛОК КАНАЛЬНОГО ТИПА			KMKF20HZAN1	KMKF35HZAN1				
Производительность	кВт	Охлаждение/нагрев	2.05/2.34	2.05/2.34 2.64/2.93				
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1					
Расход воздуха (макс./сред./мин.)	м³/ч	-	500/340/230	600/480/300				
Внешнее статическое давление	Па	-	40	40	60			
Уровень шума (выс./сред./низ.)	дБА	-	42/38/35					
Габариты (ШхВхГ)	ММ	-	700x200x450					
Bec	кг	-		18				
Трубопровод хладагента	l	Диаметр для жидкости	6.35					
(R410A)	MM	Диаметр для газа	9.52					
Пульт управления		Проводной	KWC-32					

С-ИНВЕРТОРНАЯ МУЛЬТИСИСТЕМА KENTATSU CO СВОБОДНОЙ КОМБИНАЦИЕЙ ВНУТРЕННИХ БЛОКОВ

K2(3,4,5)MRE(F)


		Индекс производительности внутренних блоков											
Модель наружного блока	Один блок Два блока					Три б	ілока			Четыр	е блока		
	20	20+20	25+25										
K2MRE(F)40HZAN1	25	20+25	25+35										
	35	20+35											
	20	20+20	25+25										
V284DEF01174814	25	20+25	25+35										
K2MRE50HZAN1	35	20+35	25+50										
	50	20+50	35+35										
	20	20+20	25+25	35+50	20+20+20	20+25+25	25+25+25						
V284DEC01174814	25	20+25	25+35		20+20+25	20+25+35	25+25+35						
K3MRE60HZAN1	35	20+35	25+50		20+20+35								
	50	20+50	35+35										
	20	20+20	25+25	35+50	20+20+20	20+25+25	25+25+25	25+35+35					
K3MRE80HZAN1	25	20+25	25+35		20+20+25	20+25+35	25+25+35						
K3MKE8UHZANT	35	20+35	25+50		20+20+35	20+35+35							
	50	20+50	35+35		20+20+50								
	20	20+20	25+25	35+50	20+20+20	20+25+25	20+35+50	25+35+35	20+20+20+20	20+20+25+25	20+25+25+25	25+25+25+25	
K4MRE80HZAN1	25	20+25	25+35	50+50	20+20+25	20+25+35	25+25+25	25+35+50	20+20+20+25	20+20+25+35	20+25+25+35	25+25+25+35	
K4WINEOUHZAIN I	35	20+35	25+50		20+20+35	20+25+50	25+25+35	35+35+35	20+20+20+35	20+20+35+35	20+25+35+35		
	50	20+50	35+35		20+20+50	20+35+35	25+25+50		20+20+20+50				
	20	20+20	25+25	35+35	20+20+20	20+35+35	25+25+50	35+35+35	20+20+20+20	20+20+35+35	20+25+35+50	25+25+35+35	
	25	20+25	25+35	35+50	20+20+25	20+35+50	25+35+35	35+35+50	20+20+20+25	20+20+35+50	20+35+35+35	25+25+35+50	
	35	20+35	25+50	50+50	20+20+35	20+50+50	25+35+50	35+50+50	20+20+20+35	20+20+50+50	20+35+35+50	25+35+35+35	
K4MRE100HZAN1	50	20+50			20+20+50	25+25+25	25+50+50		20+20+20+50	20+25+25+25	25+25+25+25	25+35+35+50	
					20+25+25	25+25+35			20+20+25+25	20+25+25+35	25+25+25+35	35+35+35+35	
					20+25+35				20+20+25+35	20+25+25+50	25+25+25+50		
					20+25+50				20+20+25+50	20+25+35+35			
	20	20+20	25+25	35+35	20+20+20	20+25+50	25+25+50	35+50+50	20+20+20+20	20+20+35+50	20+35+35+35	25+25+35+50	
	25	20+25	25+35	35+50	20+20+25	20+35+35	25+35+35	25+50+50	20+20+20+25	20+20+50+28	20+35+35+50	25+25+50+50	
	35	20+35	25+50	50+50	20+20+35	20+35+50	25+35+50	50+50+50	20+20+20+35	20+25+25+25	20+35+50+50	25+35+35+35	
VEMPET 20UZANA	50	20+50			20+20+50	20+50+50	35+35+35		20+20+20+50	20+25+25+35	25+25+25+25	25+35+35+50	
K5MRE120HZAN1					20+25+25	25+25+25	35+35+50		20+20+25+25	20+25+25+50	25+25+25+35	25+35+50+50	
					20+25+35	25+25+35			20+20+25+35	20+25+35+35	25+25+25+50	35+35+35+35	
									20+20+25+50	20+25+35+50	25+25+35+35	35+35+35+50	
									20+20+35+35	20+25+50+50			

Модель наружного	Индекс производительности внутренних блоков									
блока			Пять блоков							
	20+20+20+20+20	20+20+20+35+50	20+20+25+50+50	20+25+25+35+50	25+25+25+25+50					
	20+20+20+20+25	20+20+20+50+50	20+20+35+35+35	20+25+35+35+35	25+25+25+35+35					
	20+20+20+20+35	20+20+25+25+25	20+20+35+35+50	20+25+35+35+50	25+25+25+35+50					
V500054201174014	20+20+20+20+50	20+20+25+25+35	20+25+25+25+25	20+35+35+35+35	25+25+35+35+35					
K5MRE120HZAN1	20+20+20+25+25	20+20+25+25+50	20+25+25+25+35	25+25+25+25	25+35+35+35+35					
	20+20+20+25+35	20+20+25+35+35	20+25+25+25+50	25+25+25+25+35						
	20+20+20+25+50	20+20+25+35+50	20+25+25+35+35							
Γ	20+20+20+35+35									

Все мультисплит-системы могут комплектоваться внутренними блоками настенного, канального (скрытого монтажа), кассетного 600х600 мм типов.

Номинальная холодопроизводительность мультисплит-систем для K2MRE(F)40HZAN1 - 4.0 кВт, K2MRE50HZAN1 - 5.0 кВт, K3MRE60HZAN1 - 6.0 кВт; K3MRE60HZAN1 - 6.0 кВт, K3MRE60HZAN1 - 6.0 кВт, K3MRE60HZAN1 - 10.0 кВт, K

КОНДИЦИОНЕРЫ КОММЕРЧЕСКОГО НАЗНАЧЕНИЯ

***** СПЛИТ-СИСТЕМА

КАНАЛЬНОГО ТИПА СРЕДНЕНАПОРНАЯ

KSKR_HFA, KSKS_HFA

■ СОХРАНЯЕТ ВЫСОТУ ПОМЕЩЕНИЯ

Внутренний блок высотой от 210 мм размещают за подшивным или подвесным потолком комнаты или прихожей без значительной потери высоты.

■ ВЫСОКАЯ МОЩНОСТЬ

Статический напор воздушного потока до 160 Па. Возможна подача воздуха в помещение по системе воздуховодов.

■ УПРАВЛЕНИЕ СКОРОСТЬЮ ВЕНТИЛЯТОРА

Можно изменить кратность рециркуляции воздуха в помещении, а также снизить уровень шума до 39 дБА.

■ ПРОТЯЖЕННЫЕ ТРАССЫ ТРУБОПРОВОДА

Максимальное расстояние между блоками - 50 м, перепад высот 30 м (в зависимости от модели).

■ ВЫСОКОЭФФЕКТИВНЫЙ ВОЗДУШНЫЙ ФИЛЬТР

Срок службы фильтра увеличен. Входит в комплект.

■ ВЫНЕСЕННЫЙ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ С ПРИЕМНИКОМ ИК-СИГНАЛА

■ ИК-ПУЛЬТ (опция)

МОДЕЛЬНЫЙ РЯД

KSKS53/70HFAN1 KSKR105/140/176HFAN3

ПУЛЬТ УПРАВЛЕНИЯ **КWC-32**

НАРУЖНЫЙ БЛОК **KSUT70HFAN1**

☼ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSKS53HFAN1	KSKS70HFAN1	KSKR105HFAN3	KSKR140HFAN3	KSKR176HFAN3
НАРУЖНЫЙ БЛОК			KSUT53HFAN1	KSUT70HFAN1	KSUT105HFAN3	KSUT140HFAN3	KSUT176HFAN3
	кВт	Охлаждение	5.28	7.03	10.55	14.07	16.12
Производительность	КВТ	Нагрев	5.57	7.62	10.84	16.12	17.58
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1	220~240, 50, 1	380~415, 50, 3	380~415, 50, 3	380~415, 50, 3
П	кВт	Охлаждение	2.20	2.87	3.65	5.35	6.36
Потребляемая мощность	КВТ	Нагрев	1.75	2.30	3.32	4.82	5.54
2 11 "		Охлаждение (EER)	2.40/F	2.65/D	2.89/C	2.89/C	2.89/C
Энергоэффективность/Класс	-	Нагрев (СОР)	3.18/D	3.05/D	3.27/C	3.27/C	3.27/C
Годовое энергопотребление	кВт•ч	Среднее значение	1100	1435	1827	2675	3180
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	978/814/731	1359/1177/965	1804/1372/1149	2100/1850/1490	2400/1850/1490
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	44/42/39	44/40/38	49/43/41	48/45/41	50/46/40
Внешнее статическое давление	Па	Внутренний блок	80	80	100	160	160
F. C. (III. D. F.)		Внутренний блок	920x210x635	920x270x635	1100x249x774	1100x249x774	1100x249x774
Габариты (ШхВхГ)	MM	Наружный блок	770x555x300	845x702x363	946x810x410	900x1170x350	900x1170x350
		Внутренний блок	23.8	32.2	32.2	46	46
Bec	КГ	Наружный блок	36.5	52.7	77.1	97	97
		Диаметр для жидкости	6.35	9.52	9.52	9.52	9.52
Трубопровод хладагента	MM	Диаметр для газа	12.7	15.9	19.1	19.1	19.1
(R410A)		Длина между блоками	25	25	30	50	50
	М	Перепад между блоками	15	15	20	30	30
Диапазон рабочих		Охлаждение			18~43		
температур	°C	Нагрев			-7~24		

⇔ СПЛИТ-СИСТЕМА

КАНАЛЬНОГО ТИПА СРЕДНЕНАПОРНАЯ

KSKT_HFA

■ ВНУТРЕННИЙ БЛОК

высотой от 270 мм размещают за подшивным или подвесным потолком комнаты или прихожей без значительной потери высоты помещения.

■ СТАТИЧЕСКИЙ НАПОР

воздушного потока – до 120 Па. Возможна подача воздуха в помещение по системе воздуховодов.

■ УПРАВЛЕНИЕ СКОРОСТЬЮ ВЕНТИЛЯТОРА

позволяет изменить кратность рециркуляции воздуха в помещении, а также снизить уровень шума до 37 дБА.

■ РАЗМЕРЫ ТРАССЫ ТРУБОПРОВОДА

– максимальное расстояние и перепад высот между блоками: до 50 м и до 25 м (в зависимости от модели).

■ ВЫСОКОЭФФЕКТИВНЫЙ ВОЗДУШНЫЙ ФИЛЬТР

с увеличенным сроком службы в комплекте.

■ ВЫНЕСЕННЫЙ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ С ПРИЕМНИКОМ ИК-СИГНАЛА.

■ ИК-ПУЛЬТ (опция).

МОДЕЛЬНЫЙ РЯД **КSKT105/140/176HFAN3**

ПУЛЬТ УПРАВЛЕНИЯ **КWC-32**

НАРУЖНЫЙ БЛОК **KSUN105HFAN3**

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSKT105HFAN3	KSKT140HFAN3	KSKT176HFAN3		
НАРУЖНЫЙ БЛОК			KSUN105HFAN3	KSUN140HFAN3	KSUN176HFAN3		
Произведительность	кВт	Охлаждение	Охлаждение 10.55 14.07		16.12		
Производительность	KDI	Нагрев	11.72	16.12	17.58		
Электропитание	В, Гц, Ф	Трехфазное		380~420, 50, 3			
Потребляемая мощность	кВт	Охлаждение	3.82	5.19	6.23		
потреоляемая мощность	KDI	Нагрев	3.44	4.41	5.19		
Энергоэффективность/Класс	_	Охлаждение (EER)	2.76/D	2.71/D	2.59/E		
энергоэффективность/класс	_	Нагрев (СОР)	3.41/B	3.66/A	3.39/C		
Годовое энергопотребление	кВт•ч	Среднее значение	1910	1910 2595			
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	1848/1103/-	2282/1439/-	2275/-/-		
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	48/40/37	50/45/40	47/40/38		
Внешнее статическое давление	Па	Внутренний блок	80	100	120		
Габариты (ШхВхГ)	мм	Внутренний блок	1140x270x775	1200x300x865	1200x300x865		
табариты (шхвхг)	MM	Наружный блок	990x966x354	900x1167x340	900x1167x340		
Bec	КГ	Внутренний блок	36.5	44.5	47		
вес	KF	Наружный блок	82	96.5	98		
		Диаметр для жидкости		12.7			
Трубопровод хладагента	MM	Диаметр для газа		19			
(R410A)		Длина между блоками	30	50	50		
	М	Перепад между блоками	20	25	25		
Диапазон рабочих	°C	Охлаждение		18~43			
температур	"	Нагрев		-7~24			

⇔ СПЛИТ-СИСТЕМА

КАНАЛЬНОГО ТИПА ВЫСОКОНАПОРНАЯ

KSTV_HFA, KSTU_HFA

■ ВЫСОКОНАПОРНЫЕ КАНАЛЬНЫЕ БЛОКИ

идеально подходят для кондиционирования больших помещений, таких как склады, торговые залы, супермаркеты, залы ожидания в аэропортах.

■ ВЫСОКИЙ СТАТИЧЕСКИЙ НАПОР

воздушного потока до 200 Па.

■ УПРАВЛЕНИЕ СКОРОСТЬЮ ВЕНТИЛЯТОРА

позволяет изменить кратность рециркуляции воздуха в помещении, а также снизить уровень шума до 38 дБА.

■ САМОДИАГНОСТИКА И КОМПЛЕКСНАЯ СИСТЕМА ЗАЩИТНЫХ МЕХАНИЗМОВ

гарантирует надежную работу системы.

■ ЗАШИТА ОТ КОРРОЗИИ НАРУЖНОГО БЛОКА

с помощью специальных покрытий корпуса и конденсатора исключит появление ржавчины даже в условиях влажного климата.

■ ВЫСОКОЭФФЕКТИВНЫЙ ВОЗДУШНЫЙ ФИЛЬТР

с увеличенным сроком службы в комплекте.

■ ВЫНЕСЕННЫЙ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ С ПРИЕМНИКОМ ИК-СИГНАЛА

■ ИК-ПУЛЬТ (опция)

МОДЕЛЬНЫЙ РЯД

KSTV70HFAN1 KSTV105HFAN3 KSTU140/176HFAN3

ПУЛЬТ УПРАВЛЕНИЯ

KWC-32

НАРУЖНЫЙ БЛОК

KSUN176HFAN1

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF

НАРУЖНЫЙ БЛОК Производительность Электропитание Потребляемая мощность Энергоэффективность/Класс	кВт В, Гц, Ф кВт	Охлаждение Нагрев Трехфазное Охлаждение	7.03 7.62 220~240, 50, 1	KSUT105HFAN3 10.55 10.55	14.36 15.24	16.41
Электропитание	В, Гц, Ф кВт	Нагрев Трехфазное Охлаждение	7.62 220~240, 50, 1	10.55		
Электропитание Потребляемая мощность	В, Гц, Ф кВт	Трехфазное Охлаждение	220~240, 50, 1		15.24	10.1=
Потребляемая мощность	кВт	Охлаждение				18.17
				380~415, 50, 3	380~420, 50, 3	380~415, 50, 3
			2.71	3.75	5.13	6.50
Энергоэффективность/Класс		Нагрев	2.27	3.30	4.22	5.30
HEDROSOMEKTURHOCTE/KDSCC I		Охлаждение (EER)	2.60/E	2.81/C	2.80/D	2.53/E
элергөзффентыность, голасс	-	Нагрев (СОР)	3.36/C	3.20/C	3.61/A	3.43/B
Годовое энергопотребление	кВт•ч	Среднее значение	1355	1875	2560	3250
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	1615/1155/989	2059/1819/1667	2809/2554/2272	3150/2809/2554
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	48/42/38	55/52/50	51/49/46	52/50/48
Внешнее статическое давление	Па	Внутренний блок	120	160	200	200
5.6 (11.5.5)	мм	Внутренний блок	900x270x525	1100x270x525	1200x380x625	1200x380x625
Габариты (ШхВхГ)		Наружный блок	845x702x363	946x810x410	900x1167x340	900x1167x340
		Внутренний блок	25	33.7	46	45.9
Bec	КГ	Наружный блок	52.7	77.1	96.5	98
		Диаметр для жидкости	9.52	12.7	9.52	9.52
Трубопровод хладагента	MM	Диаметр для газа	15.9	19.1	19.1	19.1
(R410A)		Длина между блоками	25	30	50	50
	М	Перепад между блоками	15	20	25	25
Диапазон рабочих	0.0	Охлаждение		18-	~43	
температур	°C	Нагрев		-7-		

⇔ СПЛИТ-СИСТЕМА

КАНАЛЬНОГО ТИПА ВЫСОКОНАПОРНАЯ

KSTU_HFA

■ ВЫСОКОНАПОРНЫЕ КАНАЛЬНЫЕ БЛОКИ

идеально подходят для кондиционирования больших помещений, таких как склады, торговые залы, супермаркеты, залы ожидания аэропортов.

■ РАЗМЕЩЕНИЕ ВНУТРЕННЕГО БЛОКА ЗА ПОДВЕСНЫМ ИЛИ ПОДШИВНЫМ ПОТОЛКОМ

без значительной потери высоты помещения.

■ СТАТИЧЕСКИЙ НАПОР

воздушного потока – до 196 Па. Возможна подача воздуха в помещение по системе воздуховодов.

■ РАЗМЕРЫ ТРАССЫ ТРУБОПРОВОДА

максимальное расстояние между блоками — 50 м. Максимальный перепад высот — 30 м.

■ ЗАЩИТА ОТ КОРРОЗИИ НАРУЖНОГО БЛОКА

с помощью специальных покрытий корпуса и конденсатора исключит появление ржавчины даже в условиях влажного климата.

■ ВЫНЕСЕННЫЙ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ С ПРИЕМНИКОМ ИК-СИГНАЛА

■ ИК-ПУЛЬТ (опция)

МОДЕЛЬНЫЙ РЯД

KSTU240/280HFAN1 KSTU440/560HFAN1

ПУЛЬТ УПРАВЛЕНИЯ **КWC-51**

НАРУЖНЫЙ БЛОК **KSUR440HFAN3**

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

OXЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSTU240HFAN1	KSTU280HFAN1	KSTU440HFAN1	KSTU560HFAN1	
НАРУЖНЫЙ БЛОК			KSUR240HFAN3	KSUR280HFAN3	KSUR440HFAN3	KSUR560HFAN3	
	кВт	Охлаждение	22.3	28.1	44.0	56.3	
Производительность	KBT	Нагрев	25.0	31.1	47.0	58.6	
Электропитание	В, Гц, Ф	Однофазное/трехфазное		220~240, 50, 1	/ 380~415, 50, 3		
Потребляемая мощность	кВт	Охлаждение	7.5	9.6	16.3	22.0	
тотреоляемая мощность	KDI	Нагрев	8.3	10.3	15.7	19.3	
D		Охлаждение (EER)	2.97/C	2.93/C	2.70/D	2.56/E	
Энергоэффективность/Класс	_	Нагрев (СОР)	3.01/D	3.02/D	2.99/D	3.04/D	
Годовое энергопотребление	кВт•ч	Среднее значение	3750	4800	8150	11000	
Расход воздуха (макс.)	м³/ч	Внутренний блок	4500	5100	8500	10800	
Уровень шума (выс.)	дБА	Внутренний блок	56	56	63	65	
Внешнее статическое давление	Па	Внутренний блок	196	196	196	196	
F=6 (IIIDF)		Внутренний блок	1366x450x716	1366x450x716	1828x668x858	1828x668x858	
Габариты (ШхВхГ)	MM	Наружный блок	1255x908x700	1255x908x700	1250x1615x765	1390x1615x765	
		Внутренний блок	94	96	188	235	
Bec	КГ	Наружный блок	174	187	288	320	
		Диаметр для жидкости	9.52	9.52	16	16	
Трубопровод хладагента	MM	Диаметр для газа	22	25	32	32	
(R410A)		Длина между блоками		5	50		
	М	Перепад между блоками	25/30*				
Диапазон рабочих	0.0	Охлаждение	17~46	17~52	17~52	17~52	
гемператур	°C	Нагрев	-7~24				

^{*} Перепад между блоками: наружный блок выше/наружный блок ниже.

⇔ СПЛИТ-СИСТЕМА

КАССЕТНОГО ТИПА 600х600

KSZT_HFA

■ ДЕКОРАТИВНАЯ ПАНЕЛЬ КРU65-D

обеспечивает подачу воздуха в четырех направлениях и дополнительную угловую подачу. Помещение охлаждается быстрее, эффективнее и комфортнее для пользователя.

■ КОМПАКТНЫЙ ВНУТРЕННИЙ БЛОК

размером 600х600 легко монтируется в стандартной ячейке подвесного потолка.

■ УПРАВЛЕНИЕ СКОРОСТЬЮ ВЕНТИЛЯТОРА

позволяет изменить кратность рециркуляции воздуха в помещении, а также снизить уровень шума до 36 дБА (в зависимости от модели).

■ СИСТЕМА ФИЛЬТРАЦИИ

очистит воздух от пыли, пуха, частиц загрязнений и бытовых запахов.

■ СОХРАНЕНИЕ НАСТРОЕК ПОЛЬЗОВАТЕЛЯ

Обеспечивает автоматический перезапуск после сбоев в электросети.

■ РАЗМЕРЫ ТРАССЫ ТРУБОПРОВОДА

в зависимости от модели максимальное расстояние между блоками — 25 м, перепад высот — 15 м.

■ ВСТРОЕННЫЙ ДРЕНАЖНЫЙ НАСОС ВНУТРЕННЕГО БЛОКА

обеспечивает подъем отводимого конденсата на высоту до 750 мм.

■ ИК-ПУЛЬТ (опция)

МОДЕЛЬНЫЙ РЯД **KSZT35/53HFAN1**

ПУЛЬТ УПРАВЛЕНИЯ **КWC-32**

НАРУЖНЫЙ БЛОК **KSUT35HFAN1**

‡ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSZT35HFAN1	KSZT53HFAN1			
ДЕКОРАТИВНАЯ ПАНЕЛЬ			KPU65-D KPU65-D				
НАРУЖНЫЙ БЛОК			KSUT35HFAN1	KSUT53HFAN1			
Произродитов ности	кВт	Охлаждение	3.66	5.36			
Производительность	KBT	Нагрев	3.81	5.57			
Электропитание	В, Гц, Ф	Однофазное	220~24	10, 50, 1			
Потребляемая мощность	кВт	Охлаждение	1.35	1.98			
потреоляемая мощность	KBT	Нагрев	1.32	1.72			
Duantas de doutrunua est. (Visases	_	Охлаждение (EER)	2.71/D	2.71/D			
Энергоэффективность/Класс	-	Нагрев (СОР)	2.89/D	3.24/C			
Годовое энергопотребление	кВт•ч	Среднее значение	675 990				
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	650/550/430	810/650/530			
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	42/38/36	48/41/36			
5.6 (11) 5.5		Внутренний блок	570x260x570				
Габариты (ШхВхГ)	MM	Наружный блок	770x555x300				
	мм	Размер (ШхВхГ)	647x50x647				
Декоративная панель	КГ	Bec	2	.6			
Ď.		Внутренний блок	16.3	16.5			
Bec	КГ	Наружный блок	30.5	36.5			
		Диаметр для жидкости	6.35	6.35			
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7			
(R410A)		Длина между блоками	18	25			
	М	Перепад между блоками	8	15			
D	°C	Охлаждение	18	~43			
Диапазон рабочих температур	"	Нагрев	-7~24				

***** СПЛИТ-СИСТЕМА

КАССЕТНОГО ТИПА ЧЕТЫРЕХПОТОЧНАЯ

KSVR_HFA, KSVQ_HFA

■ НОВАЯ КОНСТРУКЦИЯ ВНУТРЕННЕГО БЛОКА

Высота блока от 205 мм.

■ ДЕКОРАТИВНАЯ ПАНЕЛЬ КРU95-D1

обеспечивает подачу воздуха в четырех направлениях и дополнительную угловую подачу. Помещение охлаждается быстрее, эффективнее и комфортнее для пользователя.

■ ВСТРОЕННЫЙ ДРЕНАЖНЫЙ НАСОС ВНУТРЕННЕГО БЛОКА

обеспечивает подъем отводимого конденсата на высоту до 750 мм.

■ САМОДИАГНОСТИКА И АВТОМАТИЧЕСКАЯ ЗАЩИТА

кондиционера с помощью встроенного микропроцессора, который при обнаружении неисправности включит мигание индикатора на панели внутреннего блока и предотвратит поломку кондиционера.

■ АВТОМАТИЧЕСКИЙ ПЕРЕЗАПУСК

После перебоя в электропитании кондиционер автоматически возвращается к предыдущим настройкам.

■ ПОДМЕС СВЕЖЕГО ВОЗДУХА

снижает содержание углекислого газа $({\rm CO_2})$ и улучшает качество воздуха.

■ ИК-ПУЛЬТ (опция)

МОДЕЛЬНЫЙ РЯД

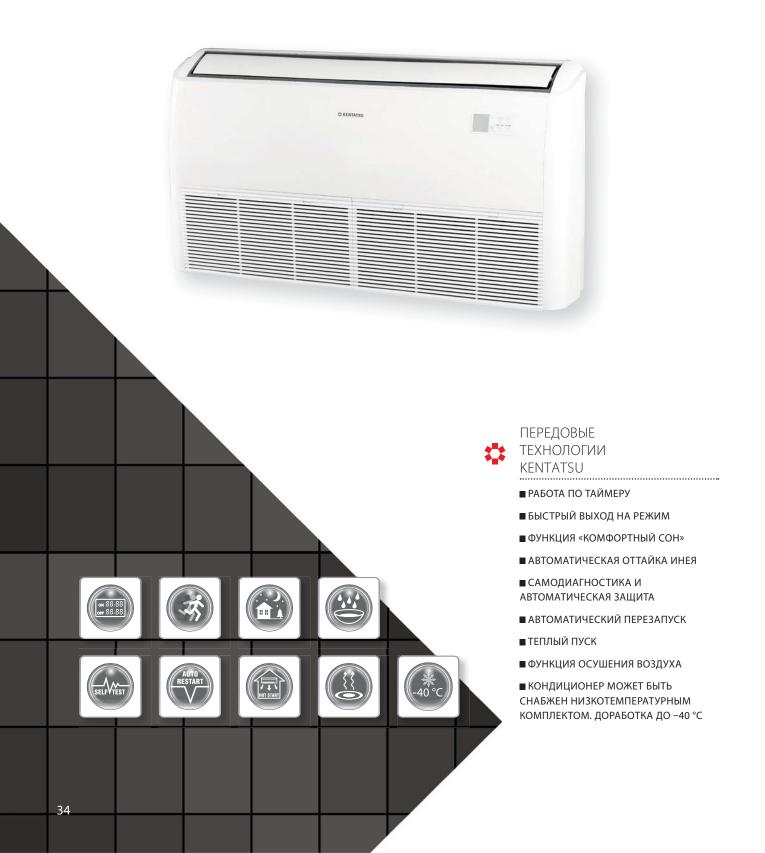
KSVR70HFAN1 KSVR105HFAN3 KSVQ140/176HFAN3

ПУЛЬТ УПРАВЛЕНИЯ **КWC-32**

НАРУЖНЫЙ БЛОК **KSUT70HFAN1**

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF


ВНУТРЕННИЙ БЛОК			KSVR70HFAN1	KSVR105HFAN3	KSVQ140HFAN3	KSVQ176HFAN3	
ДЕКОРАТИВНАЯ ПАНЕЛЬ			KPU95-D1	KPU95-D1	KPU95-D1	KPU95-D1	
НАРУЖНЫЙ БЛОК			KSUT70HFAN1	KSUT105HFAN3	KSUN140HFAN3	KSUN176HFAN3	
	кВт	Охлаждение	7.03	10.55	14.07	16.12	
Производительность	KBT	Нагрев	7.74	10.55	15.24	17.88	
Электропитание	В, Гц, Ф	-	220~240, 50, 1	380~415, 50, 3	380~415, 50, 3	380~415, 50, 3	
Потребляемая мощность	кВт	Охлаждение	2.6	3.60	5.19	6.27	
погреоляемая мощность	KDI	Нагрев	2.45	3.65	4.76	5.84	
Энергоэффективность/Класс	_	Охлаждение (EER)	2.71/D	2.93/C	2.71/D	2.57/E	
энергоэффективность/класс	_	Нагрев (СОР)	3.16/D	2.89/D	3.2/D	3.06/D	
Годовое энергопотребление	кВт•ч	Среднее значение	1300	1800	2585	3135	
Расход воздуха (макс./сред./мин.)	м³/ч	Внутренний блок	1200/1050/900	1731/1494/1297	1900/1600/1400	2000/1700/1500	
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	48/46/41	52/48/45	53/48/44	53/48/44	
Габариты (ШхВхГ)	мм	Внутренний блок	840x205x840	840x245x840	840x245x840	840x287x840	
гаоариты (шхвхг)		Наружный блок	842x695x324	946x810x410	900x1167x340	900x1167x340	
	MM	Размер (ШхВхГ)	950x55x950				
Декоративная панель	КГ	Bec	5.4	5	5.4	5.4	
D		Внутренний блок	22.1	24.9	27	29	
Bec	КГ	Наружный блок	52.7	77.1	96.5	98	
		Диаметр для жидкости		9.	52		
Трубопровод хладагента	MM	Диаметр для газа	15.9	19.1	19.1	19.1	
(R410A)		Длина между блоками	25	30	50	50	
	М	Перепад между блоками	15	20	25	25	
D	°C	Охлаждение		18-	~43		
Диапазон рабочих температур	"	Нагрев	-7~24				

‡ СПЛИТ-СИСТЕМА

УНИВЕРСАЛЬНОГО ТИПА

KSHF_HFA, KSHE_HFA

R410A

■ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ

внутреннего блока отображает заданную температуру и основные активизированные режимы.

■ УНИВЕРСАЛЬНЫЙ ВНУТРЕННИЙ БЛОК

может быть установлен на потолке или на стене рядом с полом. Эффективное воздухораспределение гарантируется и в первом, и во втором случае.

■ АВТОМАТИЧЕСКОЕ КАЧАНИЕ ЗАСЛОНОК

и по вертикали, и по горизонтали исключает застойные воздушные

■ ПРОТЯЖЕННОСТЬ ВОЗДУШНОГО ПОТОКА

за счет эффекта Коанда – блоки подойдут для удлиненных помещений, могут устанавливаться в углы.

■ НИЗКИЙ УРОВЕНЬ ШУМА

■ МОИ ПРЕДПОЧТЕНИЯ

Функция сохранения в памяти и восстановления одним нажатием кнопки желаемых параметров работы: режима, температуры, скорости вентилятора, положения или качания заслонки, работы в «ночном режиме».

■ ФУНКЦИЯ «КОМФОРТНЫЙ СОН»

Предотвращает переохлаждение или перегрев помещения, также снижает уровень шума и энергопотребление.

■ Проводной пульт **KWC-32** (опция).

МОДЕЛЬНЫЙ РЯД

KSHF35/53/70HFAN1 KSHF105HFAN3 KSHE140/176HFAN3

ПУЛЬТ УПРАВЛЕНИЯ **КІС-82Н**

KWC-32 (опция)

НАРУЖНЫЙ БЛОК **КSUT70HFAN1**

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / HAГРЕВ ON/OFF

ВНУТРЕННИЙ БЛОК			KSHF35HFAN1	KSHF53HFAN1	KSHF70HFAN1	KSHF105HFAN3	KSHE140HFAN3	KSHE176HFAN3
НАРУЖНЫЙ БЛОК			KSUT35HFAN1	KSUT53HFAN1	KSUT70HFAN1	KSUT105HFAN3	KSUN140HFAN3	KSUN176HFAN3
-		Охлаждение	3.66	5.42	7.03	10.55	14.07	16.12
Производительность	кВт	Нагрев	3.81	5.57	7.62	10.55	15.24	17.58
Электропитание	В, Гц, Ф	-	220~240, 50, 1	220~240, 50, 1	220~240, 50, 1	380~415, 50, 3	380~415, 50, 3	380~415, 50, 3
D6	кВт	Охлаждение	1.35	2.11	2.63	3.60	5.06	6.27
Потребляемая мощность	КВТ	Нагрев	1.28	1.73	2.45	3.65	5.06	6.40
2 11 "		Охлаждение (EER)	2.71/D	2.57/E	2.67/D	2.93/C	15.24 380~415, 50, 3 5.06 5.06 2.78/D 3.01/D 2530 331 1750/1400/1250 53/48/44 755 1285x235x675	2.52/E
Энергоэффективность/Класс	-	Нагрев (СОР)	2.98/D	3.22/C	3.11/D	2.89/D	3.01/D	3.03/D
Годовое энергопотребление	кВт•ч	Среднее значение	675	1055	1315	1800	2530	3135
Расход воздуха (макс./сред./мин.)	м³/ч Внутренний блок		620/500/400	1150/950/800	1250/1050/900	1819/1536/1331	1750/1400/1250	2300/1800/1600
Уровень шума (выс./сред./низ.)	дБА	Внутренний блок	37/33/30	53/48/43	54/49/44	54/50/47	53/48/44	55/49/46
F=6===== (UI+D+F)		Внутренний блок	1068x235x675	1068x235x675	1068x235x675	1285x235x675	1285x235x675	1650x235x675
Габариты (ШхВхГ)	MM	Наружный блок	770x555x300	770x555x300	845x702x363	946x810x410	900x1167x340	900x1167x340
Bec	КГ	Внутренний блок	23.6	24	24.6	29.9	31	39
вес	Kr	Наружный блок	30.5	36.5	52.7	77.1	96.5	98
		Диаметр для жидкости	6.35	6.35	9.52	9.52	9.52	9.52
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7	15.9	19.1	19.1	19.1
(R410A)	l	Длина между блоками	18	25	25	30	50	50
	М	Перепад между блоками	8	15	15	20	25	25
D	∘c	Охлаждение			18	~43		
Диапазон рабочих температур		Нагрев			-7-	~24		

⇔ СПЛИТ-СИСТЕМА

НАПОЛЬНОГО ТИПА

KSFV_XFA, KSFW_XFA

R410A

■ ШИРОКАЯ ОБЛАСТЬ ПРИМЕНЕНИЯ

Применяется в выставочных залах, магазинах, залах ожидания, где крепление внутренних блоков к потолкам или стенам невозможно или нежелательно.

■ ЖИДКОКРИСТАЛЛИЧЕСКИЙ ИНФОРМАЦИОННЫЙ ДИСПЛЕЙ

На внутреннем блоке имеется жидкокристаллический информационный дисплей и удобная панель управления кондиционером.

■ СИСТЕМА ФИЛЬТРАЦИИ

очистит воздух от пыли, пуха, других загрязнений и запахов.

■ САМОДИАГНОСТИКА И АВТОМАТИЧЕСКАЯ ЗАЩИТА КОНДИЦИОНЕРА

с помощью встроенного микропроцессора, который при обнаружении неисправности включит мигание индикатора на панели внутреннего блока и предотвратит поломку кондиционера.

■ УПРАВЛЕНИЕ СКОРОСТЬЮ ВЕНТИЛЯТОРА

позволяет менять кратность рециркуляции воздуха в помещении в широком диапазоне.

■ ФУНКЦИЯ «КОМФОРТНЫЙ СОН»

предотвращает переохлаждение или перегрев помещения, также снижает уровень шума и энергопотребление.

■ ЗАЩИТА ОТ КОРРОЗИИ НАРУЖНОГО БЛОКА обеспечивается специальным антикоррозионным покрытием на корпусе и конденсаторе.

МОДЕЛЬНЫЙ РЯД KSFW70XFAN1 KSFV125/140XFAN3

НАРУЖНЫЙ БЛОК **KSRV140HFAN3**

☆ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОХЛАЖДЕНИЕ / НАГРЕВ + ЭЛЕКТРОНАГРЕВАТЕЛЬ

ON/OFF

ВНУТРЕННИЙ БЛОК			KSFW70XFAN1	KSFV125XFAN3	KSFV140XFAN3					
НАРУЖНЫЙ БЛОК			KSUT70HFAN1	KSRV125HFAN3	KSRV140HFAN3					
-		Охлаждение	7.03	12.31	14.01					
Производительность	кВт	Нагрев	7.6+2.05*	15.2+3.5*	15.2+3.5*					
Электропитание	В, Гц, Ф	-	220~240, 50, 1	380~415, 50, 3	380~415, 50, 3					
Потребляемая мощность	кВт	Охлаждение	2.50	5.00	5.30					
потреоляемая мощность	КВТ	Нагрев	2.35+2.3	5.80+3.75	5.40+3.5					
2 11 "		Охлаждение (EER)	2.81/C	2.46/E	2.64/D					
Энергоэффективность/Класс	-	Нагрев (СОР)	3.24/C	2.63/E	2.82/D					
Годовое энергопотребление	кВт•ч	Среднее значение	1250	2500	2650					
Расход воздуха (макс./мин.)	м³/ч	Внутренний блок	1069/884	1775/1546	1750/1450					
Уровень шума (выс./низ.)	дБА	Внутренний блок	52.5/48	55/52	54/50					
5 ((U. D. 5)		Внутренний блок	510x1695x240	550x1800x350	550x1800x350					
Габариты (ШхВхГ)	MM	Наружный блок	845x702x363	946x810x410	900x1170x350					
Bec		Внутренний блок	34.7	52.4	50					
вес	КГ	Наружный блок	52.7	82.7	97					
		Диаметр для жидкости	9.52	12.7	12.7					
Трубопровод хладагента	MM	Диаметр для газа	15.9	19.1	19.1					
(R410A)		Длина между блоками	XSUT70HFAN1 7.03 7.6+2.05* 220~240,50,1 2.50 2.35+2.3 2.81/C 3.24/C 1250 1069/884 52.5/48 510x1695x240 845x702x363 34.7 52.7 9.52 15.9 25	50	50					
	М	Перепад между блоками	15	30	30					
	0.0	Охлаждение	18~43							
Диапазон рабочих температур	°C	Нагрев	7~24							

^{*} Производительность встроенного электронагревателя.

❖ КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ БЛОКИ

KHHA

KHHA610CFAN3

KHHA35CFAN1 KHHA53CFAN1 KHHA71CFAN1 KHHA105CFAN3 KHHA120CFAN3 KHHA160CFAN3 KHHA220CFAN3 KHHA280CFAN3

CFAN3 KHHA530CF

KHHA350CFAN3

KHHA450CFAN3 KHHA700CFAN3 KHHA530CFAN3 KHHA1050CFAN3

Компрессорно-конденсаторные блоки с воздушным охлаждением предназначены для работы с теплообменными секциями непосредственного испарения центральных кондиционеров или приточных установок.

- Хладагент R410A.
- Эффективное и надежное решение для кондиционирования объектов площадью до 1000 м².
- Широкий диапазон производительности: от 3.2 до 105 кВт.
- Компрессоры Danfoss и Copeland.

- Встроенный блок автоматики управляет работой компрессора и вентилятора, контролирует состояние защитных устройств, предотвращает частый запуск и выключение компрессора.
- Протяженная трасса хладагента, большой перепад высоты между блоком и секцией приточной установки.

Опционально предлагается соединительный комплект, включающий терморегулирующий вентиль, электромагнитный клапан, фильтр-осушитель, смотровое стекло.

ТОЛЬКО ОХЛАЖДЕНИЕ

модель			KHHA35 CFAN1	KHHA53 CFAN1	KHHA71 CFAN1	KHHA105 CFAN3	KHHA120 CFAN3	KHHA160 CFAN3		
Производительность	кВт	Охлаждение	3.2	5.3	7.1	10.5	14.0	16.0		
Электропитание	В, Гц, Ф	-		220-240, 50, 1			380-415, 50, 3	50, 3		
Потребляемая мощность	кВт	Охлаждение	1.3	2.05	2.7	4	5.2	6.2		
Уровень звукового давления	дБА	-	54.1	59.3	59.3	63.2	62.9	62.4		
Количество контуров						1				
Габариты	MM	ШхВхГ	848x549x300	852x579x315	916x702x360	1077x967x396	978x1167x400	978x1167x400		
Macca	КГ	-	30.5	36.5	48.5	85.8	94/3.0	96.6		
	ММ	Диаметр для жидкости	6.35	6.35	9.53	9.53	9.53	9.53		
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7	16	19	19	19		
(R410A)	М	Длина между блоками	20	20	20	30	30	30		
	М	Перепад между блоками	10	10	10	20	20	20		
Диапазон рабочих температур	°C	-	17~46							
Комплект дополнительного обс	рудования	l	CCK-3.5	CCK-5.3	CCK-7.1	CCK-10.5	CCK-12	CCK-16		

модель			KHHA220 CFAN3	KHHA280 CFAN3	KHHA350 CFAN3	KHHA450 CFAN3	KHHA530 CFAN3	KHHA610 CFAN3	KHHA700 CFAN3	KHHA1050 CFAN3		
Производительность	кВт	Охлаждение	22.0	28.0	35.0	45.0	53.0	61.0	70.0	105.0		
Электропитание	В, Гц, Ф	-				380-41	5, 50, 3					
Потребляемая мощность	кВт	Охлаждение	11.7	14.4	17.3	17.6	16.8	19	22	28		
Уровень звукового давления	дБА	-	65 67 69 70 73 76 76						78			
Количество контуров					1				2			
Габариты	мм	ШхВхГ	1255x908x700			1250x1610x765	1825x12	245x899	2158x1260x1082	2158x1670x1082		
Масса/заправка хладагентом	КГ	-	172/5.4	185/6.0	199/7.2	288/10.0	395/11.0	395/12.4	508/17.0	570/18.0		
	мм	Диаметр для жидкости	9.52	9.52	12.7	16	12.7x2	12.7x2	12.7x2	12.7x2		
Трубопровод хладагента	мм	Диаметр для газа	22	25	28.6	32	25.0x2	25.0x2	25.0x2	25.0x2		
(R410A)	м	Длина между блоками	50	50	50	50	50	50	50	50		
	м	Перепад между блоками	30	30	30	30	30	30	30	30		
Диапазон рабочих температур	°C	-		17~52		18~46						
Комплект дополнительного обо	рудования	ı	CCK-22	CCK-28	CCK-35	CCK-45	CCK-53/61	CCK-53/61	CCK-70	CCK-105		

❖ КРЫШНЫЙ КОНДИЦИОНЕР

KRFN

- Новая конструкция блока.
- Увеличена площадь забора воздуха.
- Удобное обслуживание: легкий доступ к компрессору, вентилятору, двигателю, испарителю, электрической части благодаря съемным панелям корпуса.
- Возможность попеременной работы компрессоров.
- Высокоэффективный центробежный вентилятор с улучшенными лопастями.
- Двигатель вентилятора с регулируемым шкивом.
- Внешнее статическое давление до 270 Па.
- В комплекте проводной пульт КWC-22 (для блоков KRFN300-1050C(H)F), KFC-14 (для блоков KRFN220-260HF) и KFC-13 (для блоков KRFN220-260CF).

МОДЕЛЬНЫЙ РЯД

KRFN220C(H)FAN3 KRFN260C(H)FAN3 KRFN300C(H)FAN3 KRFN350C(H)FAN3 KRFN440C(H)FAN3 KRFN530C(H)FAN3 KRFN600C(H)FAN3 KRFN700C(H)FAN3 KRFN880C(H)FAN3

ТОЛЬКО ОХЛАЖДЕНИЕ

модель		KRFN_CFAN3	220	260	300	350	440	530	600	700	880	1050
Производительность	кВт	Охлаждение	22	26	30	35	44	53	61	70	87	105
Электропитание	В, Гц, Ф	-					380~41	5, 50, 3				
Потребляемая мощность	кВт	Охлаждение	6.6	7.9	9.2	10.7	13.3	16.7	19.1	22.6	28.0	34.3
Энергоэффективность	-	Охлаждение (EER)	3.3/A	3.29/A	3.26/A	3.27/A	3.31/A	3.17/B	3.19/B	3.10/B	3.11/B	3.06/B
Годовое энергопотребление (охлаждение)	кВт•ч	Среднее значение	3300	3950	4600	5350	6650	8350	9550	11300	14000	17150
Расход воздуха	-	Испаритель	4757	4808	5947	6966	9345	11893	12912	14951	16990	20388
Уровень двукового давления	дБА	-	71	71.5	70.3	71.7	72.6	71.8	75.5			
Внешнее статическое давление	Па	-	80	80	80	90	110	110	110	120	130	270
Габариты (ШхВхГ)	MM	-	1475x84	40x1130	1483x12	31x1138	1965x12	30x1130	1670x12	47x2192	2320x12	45x2220
Bec	КГ	-	223	231	331	345	433	470	590	670	895	910
Диапазон рабочих температур	°C	Охлаждение	10~52									

ОХЛАЖДЕНИЕ/НАГРЕВ

модель		KRFN_HFAN3	220	260	300	350	440	530	600	700	880	1050
		Охлаждение	22	26	30	35	44	53	61	70	88	98
Производительность	кВт	Нагрев	26	30	35	40	45	56	64	75	97	111.5
Электропитание	В, Гц, Ф	-			•		380~415, 50, 3					
		Охлаждение	6.6	7.9	9.3	10.7	13.3	16.7	19.1	22.6	28.9	32.8
Потребляемая мощность	кВт	Нагрев	7.5	8.9	10.6	11.9	13.2	17.2	19.5	23.6	30.3	36.5
Эффективность / Класс		Охлаждение (EER)	3.3/A	3.29/A	3.23/B	3.27/A	3.31/A	3.17/B	3.19/B	3.10/B	3.04/B	2.99/C
эффективность / класс		Нагрев (СОР)	3.47/B	3.37/C	3.30/C	3.36/C	3.41/B	3.26/C	3.28/C	3.18/D	3.20/D	3.05/D
Годовое энергопотребление	кВт.ч	Среднее значение	3300	3950	4650	5350	6650	8350	9550	11300	14450	16400
Расход воздуха	м3/ч	Испаритель	4757	4808	5947	6966	9345	11893	12912	14951	16990	20388
Уровень двукового давления	дБА	-	71	72.1	71.5	71.5	71.8	76.9	76	75.3	76.8	77.9
Внешнее статическое давление	Па	-	80	80	80	90	110	110	110	120	130	270
Габариты (ШхВхГ)	MM	-	1475x84	40x1130	1483x12	31x1138	1965x12	230x1130	1670x12	47x2192	2320x12	245x2220
Bec	КГ	-	229	244	340	343	451	492	615	690	940	970
	°C	Охлаждение					10	~46				
Диапазон рабочих температур	°C	Нагрев					-9,	~24				

⇔ ОБЩИЕ СПРАВОЧНЫЕ СВЕДЕНИЯ

ОБОЗНАЧЕНИЕ ИСТОЧНИКА ЭЛЕКТРОПИТАНИЯ

Символы	Значения
N1	~1 Ф, 220-240 В, 50 Гц
N3	~3 Ф, 380-415 В, 50 Гц

СТАНДАРТНЫЕ УСЛОВИЯ, ДЛЯ КОТОРЫХ В КАТАЛОГЕ ПРИВЕДЕНЫ НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ ХОЛОДО- И ТЕПЛОПРОИЗВОДИТЕЛЬНОСТИ КОНДИЦИОНЕРОВ

	Ter	пловой режим работы кондиционера	a				
Измеряемый параметр	T	Охлаждени	е/нагрев				
	Только охлаждение	Режим охлаждения	Режим нагрева				
Taurana a saurananu °C	27 (по сухому термометру)	27 (по сухому термометру)	- 20				
Температура в помещении, °С	19 (по влажному термометру)	19 (по влажному термометру)	20				
Tourness una una una una constanta of	35	35	7 (по сухому термометру)				
Температура наружного воздуха, °С	33	35	6 (по влажному термометру)				
Длина трассы, м	От выхода наружного блока до входа внутреннего блока по горизонтали						
Перепад высот между наружным и внутренним блоками, м	От выхода наружного блока до вход	а внутреннего блока по вертикали					

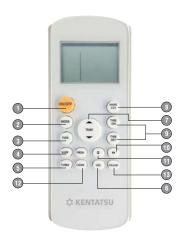
УРОВЕНЬ ШУМА

Уровень шума в дБА определялся пересчетом звукового давления, измеренного с помощью микрофона на расстоянии 1 м от внутреннего или наружного блока в специальной акустической камере.

🗱 ТАБЛИЦА СОВМЕСТИМОСТИ ПУЛЬТОВ УПРАВЛЕНИЯ С МОДЕЛЬНЫМИ РЯДАМИ ВНУТРЕННИХ БЛОКОВ

Tu										
Тип внутреннего блока	KIC-80H	KIC-81H	KIC-85H	KIC-82H	KIC-90H	KWC-32	KWC-22	KWC-51	KFC-13	KFC-14
KSGB, KMGB настенный										
KSGMA, KMGMA настенный										
KSGX, KSGN, KMGE настенный										
KSGR настенный					•					
KSZT, KMZE, KMZF кассетный (600x600)				•				•		
KSKS, KSKR, KSKT, KMKE, KMKF канальный средненапорный				٥				٥		
KSHF, KSHE универсальный						\$ ∗				
KSVR, KSVQ кассетный				•						
KSTT, KSTU канальный высоконапорный				٠						
KRFN крышный									‡ ∗∗	•
KSTU канальный высоконапорный большой мощности										

^{*} Не поддерживает функцию изменения воздушного потока по горизонтали.


^{**} Для моделей с режимом работы «только охлаждение».

□УЛЬТЫ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

ИНФРАКРАСНЫЕ

KIC-80H, KIC-81H, KIC-82H, KIC-85H

Компактные и удобные пульты дистанционного управления идеально подходят для различных моделей внутренних блоков. Все пульты оснащены большим жидкокристаллическим дисплеем, на котором отображаются активные функции кондиционера.

- 1 Включение и выключение кондиционера.
- 2 Выбор режима работы (авто, охлаждение, осушка, нагрев, вентилятор).
- 3 Выбор скорости вращения вентилятора (авто, низкая, средняя, высокая).
- 4 Комфортный сон.
- 5 Быстрый выход на режим.
- 6 Отключение дисплея внутреннего блока, в некоторых моделях также звуковых сигналов и боковой подсветки.
- 7 Кнопки «Больше» «Меньше» при регулировке температуры / времени вкл / выкл таймера.
- Функция «Мои предпочтения» (установка и восстановление настроек пользователя).
- 9 Включение / выключение таймера.
- 10 Задание положения горизонтальной заслонки (каждое нажатие изменяет поворот заслонки на 6°).
- 11 Автоматическое качание горизонтальной и вертикальной заслонок (КSHV, KMHC). Длительное удержание кнопки SWING вкл. / выкл. горизонтальное покачивание заслонок.
- 12 Включение / выключение функции самоочистки внутреннего блока.
- 13 Режим локального комфорта.

ПРОВОДНОЙ

KWC-32

Пульт входит в стандартную комплектацию внутренних блоков полупромышленной серии за исключением внутренних блоков универсального типа серии KSHF, KSHE.

Пульт компактен, имеет современный дизайн. Изящный корпус серебристого цвета гармонично сочетается с любыми интерьерами. На удобном высококонтрастном дисплее отображается вся необходимая пользователю информация по режимам и параметрам работы кондиционера. Эргономичная клавиатура с небольшим количеством кнопок обеспечивает простоту и легкость управления.

KWC-32

- 1 Выбор режима работы (авто, охлаждение, осушка, нагрев, вентилятор).
- 2 Включение / выключение кондиционера.
- 3, 4 Регулировка температуры / времени вкл. / выкл. таймера.
- 5 Установки времени.
- 6 Выбор скорости вращения вентилятора (авто, низкая, средняя, высокая).
- 7 Режим включения / выключения таймера
- 8 Автоматическое качание горизонтальной заслонки.
- 9 Отмена всех текущих настроек.
- 10 Приемник ИК-сигнала.

PRO

ПОЛНАЯ ИНТЕГРАЦИЯ
В СОВРЕМЕННОМ
ГОРОДЕ

‡ ЦЕНТРАЛЬНЫЕ СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ KENTATSU

СИСТЕМЫ DX PRO

DX PRO V Heat Pump

Системы с тепловым насосом. Высокоэффективный мощный DC-инверторный компрессор. Производительность блоков 8-22 HP. Суммарная производительность системы — 88 HP.

Точная и плавная регулировка производительности в широком диапазоне. Значение энергоэффективности EER до 4,7.

DX PRO IV Heat Pump

Производительность блоков 8-18 HP. Суммарная производительность системы — 72 HP. Высокий уровень сезонной эффективности SEER до 7,6.

DX PRO IV Heat Recovery

Системы с рекуперацией тепла (8-64 HP). Непрерывный обогрев, в том числе во время цикла оттайки теплообменника.

DX PRO IV Individual

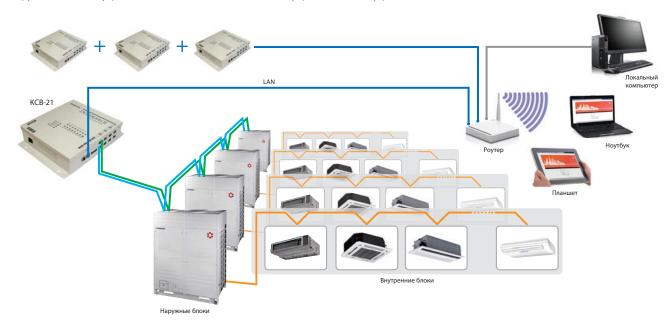
Самая большая производительность до 90 кВт.

Mini DX PRO

Отлично зарекомендовавшее себя оборудование. Производительность блоков от 12 до 18 кВт.

Производительность блоков — 7-16 HP. Расширенный модельный ряд.

DX PRO W

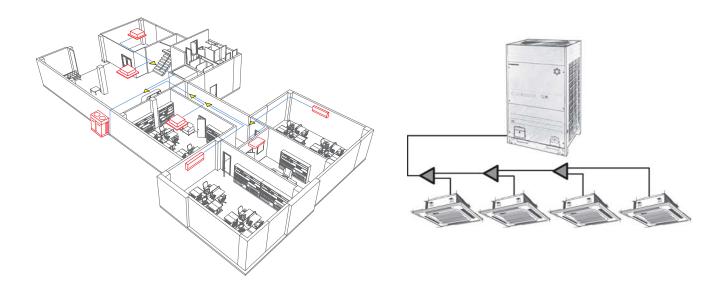

Наружные блоки с водяным охлаждением теплообменника 8-12 HP.

СРЕДСТВА УПРАВЛЕНИЯ И МОНИТОРИНГА

Центральные контроллеры, индивидуальные пульты. Система компьютеризированного управления с интерфейсными блоками КСВ-21 со встроенным web-сервером и программным обеспечением. Прямое подключение к наружному блоку. Шлюзы для интеграции в системы управления зданием по протоколам BacNet, Lonworks, Modbus. Конвертер данных для управления по сети и через Интернет. Широкий модельный ряд центральных и дистанционных пультов управления.

Система централизованного компьютерного управления компании Kentatsu обеспечивает полный мониторинг систем кондиционирования DX PRO, а также управление ими. Система допускает подключение до 4 интерфейсных блоков (сетевых шлюзов) КСВ-21. Один шлюз рассчитан на работу с 64 наружными и 256 внутренними блоками. Всего система может управлять 1024 внутренними блоками.

DX PRO


🗱 ЦЕНТРАЛЬНАЯ МНОГОЗОНАЛЬНАЯ СИСТЕМА DX PRO

Центральные многозональные системы кондиционирования Kentatsu Denki получили название DX PRO. Эти системы отслеживают изменения тепловой нагрузки в помещениях и автоматически регулируют расход хладагента, точно поддерживая в помещениях требуемую температуру воздуха. Системы DX PRO работают как на охлаждение, так и в режиме теплового насоса — на обогрев, их производительность от 12 до 200 кВт.

DX Direct eXpansion система непосредственного охлаждения PRO Proportional Refrigeration Output пропорциональное регулирование производительности про

DX PRO
центральная многозональная система непосредственного охлаждения и нагрева с пропорциональным регулированием производительности

Несмотря на широкие функциональные возможности, конфигурация системы достаточно проста: это наружные и внутренние блоки, соединенные трубопроводом и кабелями коммуникации. В наружных блоках размещены компрессоры, конденсаторы, расширительные вентили, платы управления. Внутренние блоки обеспечивают кондиционирование воздуха в помещениях (охлаждение, нагрев, осушку и очистку от пыли).

Самые современные системы управления эффективно ведут мониторинг и управление работой DX PRO. Производительность системы изменяется вместе с реальной тепловой нагрузкой по алгоритму PID-управления, при котором нестабильность параметров и накопленная ошибка — минимальны.

🎎 КОМУ И ЧЕМ УДОБНА СИСТЕМА DX PRO?

Эта система удобна всем: заказчикам, проектировщикам, монтажникам, специалистам службы сервиса.

↓ ЧЕМ СИСТЕМА DX PRO УДОБНА ВЛАДЕЛЬЦАМ?

Высокий уровень комфорта.

Индивидуальные климатические условия в каждом помещении.

Удобство и простота эксплуатации.

Высокая надежность.

Рекордно низкое потребление электроэнергии.

Самые низкие приведенные затраты на систему.

ВЫСОКИЙ УРОВЕНЬ КОМФОРТА

Ощущение комфорта достигается прежде всего за счет точного поддержания температуры воздуха в помещении. Плата управления наружного блока получает данные о параметрах микроклимата в каждом помещении и адресно посылает внутренним блокам управляющие команды для точного поддержания заданной температуры. Поскольку производительность внутреннего блока в каждый момент времени соответствует тепловой нагрузке, то изменение внешних условий (солнечная радиация) и внутренних нагрузок (включение электроприборов) не приводит к изменению заданной температуры воздуха в поме-

- Созданию комфортных ощущений способствует постоянное приближение температуры подаваемого из кондиционера воздуха к значению, установленному на пульте. Это практически исключает возможность возникновения неприятных холодных потоков воздуха (сквозняков) в рабочей зоне помещения.
- 🔳 Важным фактором комфорта является тишина. Внутренние блоки имеют низкий уровень шума, который меньше фонового уровня шума. При достижении заданной температуры воздуха в помещении внутренний блок автоматически переходит на уменьшенную скорость вращения вентилятора, и его работа становится практически бесшумной.

🗱 ИНДИВИДУАЛЬНЫЕ УСЛОВИЯ В КАЖДОМ ПОМЕЩЕНИИ

В каждом помещении могут быть созданы индивидуальные комфортные условия. Система будет автоматически поддерживать заданное значение температуры воздуха в каждом помещении и скорость движения воздуха. Система автоматически распределит всю производительность на части, соответствующие потребностям в каждом помещении.

Система DX PRO очень удобна в эксплуатации. Пользоваться ей не сложнее, чем обычным телевизором. При желании вы сможете включить и выключить систему нажатием кнопки на пульте дистанционного управления, находясь в помещении. Важно, что вы ни от кого не зависите. Вам не требуется знать, сколько помещений в данный момент подключено к системе и какая температура в каждом из них. У вас есть индивидуальный пульт управления, пользоваться которым можно в любой момент времени.

Если в системе работает часть подключенных внутренних блоков, система потребляет только количество энергии, необходимое для обеспечения их работы.

🌣 КОМУ И ЧЕМ УДОБНА СИСТЕМА DX PRO?

☼ ВЫСОКАЯ НАДЕЖНОСТЬ

Корпорация Kentatsu DENKI применяет новейшие технологии и уникальную систему контроля качества своей продукции, что гарантирует высочайшую надежность и длительный срок безотказной работы всех элементов системы DX PRO.

Важнейшим элементом системы является инверторный компрессор. Плавное изменение производительности в процессе работы уменьшает до минимума количество пусков компрессора, поэтому его движущиеся части не испытывают пусковых перегрузок и постоянно смазываются маслом. Это обеспечивает повышенную надежность работы всей системы и длительный срок службы компрессора.

Теплообменные поверхности имеют специальное покрытие, предотвращающее процесс коррозии оборудования.

🛟 РЕКОРДНО НИЗКОЕ ЭНЕРГОПОТРЕБЛЕНИЕ

Система DX PRO обладает высокой эффективностью и потребляет мало электроэнергии.

Высокая эффективность системы обусловлена комплексом технических решений:

- система DX PRO использует самый эффективный способ непосредственного охлаждения воздуха;
- система DX PRO пропорционально регулирует холодопроизводительность путем изменения расхода хладагента, что минимизирует энергопотребление на кондиционирование всего здания.

\$\$ ЧЕМ СИСТЕМА DX PRO ХОРОША ДЛЯ ПРОДАВЦА?

- Высокая надежность оборудования.
- Широкий модельный ряд.
- Привлекательное соотношение цена/качество.
- Конкурентоспособность по набору режимов и функций.
- Развитая сеть авторизованных монтажных центров.
- Номенклатура климатического оборудования значительно шире, чем у других торговых марок.
- Система соответствует реальным потребностям пользователя, что обеспечивает разумную цену при высоком качестве.
- Принцип «разумной достаточности» объединил в системе все самые необходимые возможности современной климатической техники.
- Почти в каждом городе РФ организованы авторизованные сервисные центры Kentatsu с прошедшими профессиональную подготовку квалифицированными специалистами по обслуживанию системы DX PRO.

🗱 ЧЕМ СИСТЕМА DX PRO УДОБНА ПРОЕКТИРОВЩИКАМ?

- Самое современное техническое решение.
- Гарантия достижения требований технического задания.
- Полное обеспечение технической документацией.
- Простота проектирования центральной системы кондиционирования, в том числе автоматики.
- Широкий выбор комплектующих элементов.
- Полная комплектация оборудования системы кондиционирования одним поставщиком компанией Kentatsu DENKI, благодаря чему достигается согласованность элементов оборудования и минимум работ по их подбору.
- Блочная конструкция системы с минимальным количеством связей между блоками, которая упрощает проектирование коммуникаций.
- Готовые решения систем управления.
- Малые сечения коммуникаций и возможность разнесения элементов оборудования на значительные расстояния друг от друга, что дает широкий выбор для места расположения оборудования.
- Сжатые сроки проектирования.

🗱 ЧЕМ СИСТЕМА DX PRO УДОБНА МОНТАЖНИКАМ?

- Поставка оборудования в комплектах.
- Высокая заводская готовность системы и минимальный объем монтажных работ.
- Малый вес элементов оборудования, что позволяет обходиться без сложной грузоподъемной техники и тяжелых фундаментов.
- Удобство и легкость монтажа.
- Детально отработанная технология монтажа коммуникаций, обеспечивающая высокую надежность работы системы.
- Сжатые сроки монтажа.
- Гарантия работоспособности и удовлетворения любых требований заказчика.

🜣 ЧЕМ СИСТЕМА DX PRO УДОБНА СПЕЦИАЛИСТАМ СЛУЖБЫ СЕРВИСА?

- Надежное оборудование с минимальным объемом профилактических работ.
- Система с самодиагностикой, облегчающая поиск возникшей неисправности.
- Справочные руководства по техническому обслуживанию и банки данных запасных частей.
- Возможность диагностики работы оборудования за длительный период времени с анализом развивающейся ситуации и предупреждения возможных отказов.

DX PRO

😩 ПРОГРАММА DX PRO SELECT

Программа компании DAICHI DX PRO SELECT предназначена для расчета и подбора оборудования систем Kentatsu DX PRO, программа позволяет качественно и быстро подготовить комплексное коммерческое предложение, включающее тепловые расчеты помещения, подбор оборудования, его характеристики и спецификацию с ценами.

Программой могут пользоваться как технические специалисты, так и менеджеры с начальной технической подготовкой, так как подбор оборудования осуществляется наглядно, быстро и с минимальным количеством исходных данных. Программа состоит из трех объединенных разделов: расчет тепловой нагрузки в помещении, подбор оборудования и вывод результатов.

Расчет тепловой нагрузки в помещении производится мгновенно после задания всего трех параметров. Выбирается город, в котором находится кондиционируемое помещение, тип помещения и указывается его площадь. Этого достаточно, чтобы получить все необходимые расчеты и получить качественный отчет. При расчетах используется большое количество исходных данных, которые введены в программу. При желании можно менять значения этих параметров, добиваясь более точного результата расчетов. Например, можно менять температуру воздуха в помещении и температуру наружного воздуха, размеры помещения и световых проемов, ориентацию по сторонам света и т. д.

При подборе оборудования используется аналогия со светофором. Предлагается выбрать оборудование, подсвеченное зеленым цветом. Очень важно, что когда система DX PRO подобрана, происхо-

дит расчет реальных характеристик оборудования при заданных исходных данных. И по каждому из помещений системы с помощью «Светофора» можно проверить правильность выбора оборудования. Если оборудование не полностью соответствует заданным условиям, «загорается» желтый свет, и можно оценить, насколько реальная температура воздуха в помещении будет отличаться от заданного значения.

Программа выполняет уникальную функцию: кроме температуры воздуха определяется и относительная влажность воздуха в поме-

Программа содержит полную базу данных по системе Kentatsu DX PRO. Эта база позволяет при выборе оборудования ознакомиться с его техническими характеристиками и потребительскими свойствами. Программа позволяет задавать конфигурацию фреонопроводов системы, при этом автоматически подбирает диаметры труб и определяет модели тройников (рефнетов).

Результаты расчетов могут быть сохранены и редактироваться в дальнейшем. Отчеты выводятся в виде файлов Microsoft Office Word и содержат всю необходимую подробную информацию по проекту.

R410A DX PRC

☆ СИСТЕМЫ DX PRO V

KTRV250/290/340HZAN3-B KTRV400/450/500/560/615HZAN3-B

Новые центральные системы серии DX PRO V обеспечивают одну из самых высоких в отрасли энергоэффективность охлаждения и обогрева за счет использования только инверторных компрессоров и вентиляторов с двигателями постоянного тока, а также теплообменника с высоким коэффициентом теплопередачи.

NEW

🗱 ПРЕИМУЩЕСТВА И ОСОБЕННОСТИ

САМЫЙ ШИРОКИЙ МОДЕЛЬНЫЙ РЯД И ПРОИЗВОДИТЕЛЬНОСТЬ

•••••

Производительность одного блока до 22 НР, системы из четырех объединенных модулей – до 88 НР

■ Наружный блок может включать от 1 до 4 базовых модулей. Производительность систем 8-88 HP (25,4-246 кВт), поэтому они могут использоваться в зданиях самых размеров.

8, 10, 12 HP

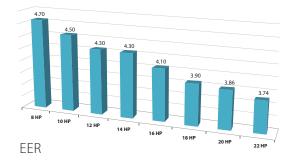
14, 16, 18, 20, 22 HP

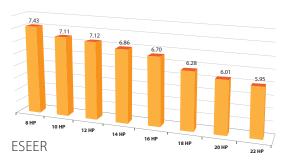
24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 HP

46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66 HP

68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88 HP

- - В системе возможно подключение до 64 внутренних блоков.
- - В системе суммарная длина трубопроводов может достигать 1000 м, максимальная эквивалентная длина от наружного блока до внутреннего достигает 200 м.
 - Перепад высот между наружным и внутренним блоками 110 м, если наружный блок ниже и 90 м, если он расположен выше.
 - Разница по вертикали между внутренними блоками до 30 м (7-10 этажей)
 - Стандартное значение эквивалентной длины трубы от первого ответвления до самого удаленного внутреннего блока 40 м. Длина может быть увеличена до 90 м при выполнении ряда условий, указанных в технической документации по монтажу.




R410A

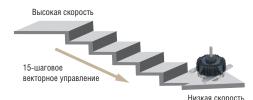
🗱 ВЫСОКИЕ КОЭФФИЦИЕНТЫ ЭНЕРГОЭФФЕКТИВНОСТИ

■ Коэффициента энергоэффективности при охлаждении EER может достигать 4.7, а при обогреве COP – до 5.6 (для систем производительностью 8 HP). Сезонный коэффициент энергоэффективности достигает очень высокого значения 7.43.

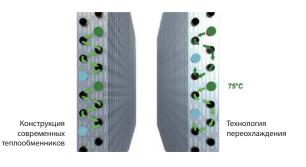
Европейский коэффициент сезонной эффективности

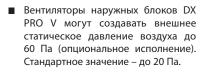
♣ ВЫСОКИЕ ТЕХНОЛОГИИ KENTATSU

В DC-инверторных компрессорах использованы инновационные решения и новейшие ключевые компоненты, позволяющие сократить энергопотребление почти на 25%.

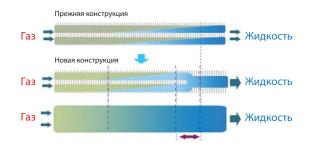

Снижение массы и габаритов на 50%

Двигатель постоянного тока оптимизирован для работы на низких и средних частотах




■ Точное ступенчатое регулирование частоты вращения DC-вентилятора осуществляется с учетом нагрузки и давления в трубопроводе, что обеспечивает минимальное энергопотребление.

🗱 ВЫСОКОЭФФЕКТИВНЫЙ ТЕПЛООБМЕННИК


- Площадь теплопередающей поверхности увеличена за счет охлаждающих ребер новой конструкции, снижено аэродинамическое сопротивление, увеличена скорость течения горячего хладагента в конденсаторе, в результате чего повышается эффективность теплопередачи и обеспечивается экономия энергии.
- Ребра имеют гидрофильное покрытие, медные трубки с внутренней накаткой, что улучшает теплообменные характеристики.

■ Благодаря эффективному дополнительному переохлаждению хладагента на входе в испаритель доля жидкости увеличивается. Это повышает удельную производительность, снижает потери в магистрали и обеспечивает безопасность эксплуатации.

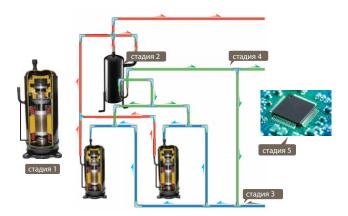
R410A DX PRO

⇔ НАДЕЖНОСТЬ

🗱 ЦИКЛИЧНЫЙ РЕЖИМ РАБОТЫ

■ В системе реализован последовательный цикличный режим запуска наружных блоков и DC-инверторных компрессоров. Это гарантирует равномерную нагрузку на компрессоры и продление срока их службы.

😂 РЕЗЕРВИРОВАНИЕ РАБОТЫ


 В наружном блоке с несколькими компрессорами при отказе одного из них немедленно вступит в работу находящийся в резерве, кондиционирование будет продолжено без длительной остановки.

☼ ПРЕЦИЗИОННЫЙ КОНТРОЛЬ УРОВНЯ МАСЛА В КОМПРЕССОРЕ

■ Пятиступенчатая технология контроля гарантирует безопасный уровень масла во всех наружных блоках и компрессорах.

- Ступень 1. Сепарация масла внутри компрессора.
- Ступень 2. Высокоэффективный центробежный масляный сепаратор (эффективность сепарации до 99%) обеспечивает отделение масла от нагнетаемого газа и его возврат в компрессоры.
- **Ступень 3.** Уравнительные масляные трубы между компрессорами обеспечивают равномерное распределение масла и бесперебойное функционирование компрессоров.
- **Ступень 4.** Уравнительные масляные трубы между модулями обеспечивают равномерное распределение масла между ними.
- **Ступень 5.** Программа автоматического отслеживания продолжительности эксплуатации и состояния системы гарантирует надежный возврат масла.

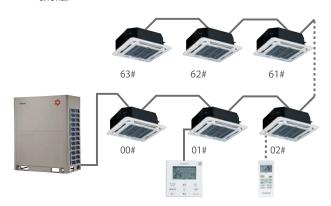
■ Системы DX PRO V надежно работают в самых жестких условиях: при температурах от -20 до +48 °C.

DX PRO

***** КОМФОРТ

БЕСШУМНЫЙ НОЧНОЙ РЕЖИМ

- Функция бесшумного ночного режима позволяет установить различные режимы работы блока во время пикового и непикового периода эксплуатации для снижения уровня шума.
- Включение и выбор режима производится на плате управления.


🗱 ИНТЕЛЛЕКТУАЛЬНАЯ ТЕХНОЛОГИЯ ОТТАИВАНИЯ

 Алгоритм интеллектуального оттаивания осуществляет включение и определяет длительность процесса в точном соответствии с реальной потребностью, что сокращает затраты тепла и обеспечивает более комфортные условия для потребителя. Продолжительность разморозки может быть сокращена до 4 минут.

💠 УДОБНЫЙ МОНТАЖ И ОБСЛУЖИВАНИЕ

🗱 АВТОМАТИЧЕСКАЯ АДРЕСАЦИЯ БЛОКОВ

- Наружный блок может автоматически распределять адреса для внутренних блоков.
- С проводного и беспроводного пульта управления можно осуществлять запрос и изменять адрес каждого внутреннего блока.

🗱 СХЕМА СИГНАЛЬНОЙ ПРОВОДКИ

 Центральный пульт управления (ССМ03 или ССМ30) по желанию можно подключить со стороны внутренних или наружных блоков (клеммы ХҮЕ).

R410A DX PRO

🗱 УДОБНЫЙ МОНТАЖ И ОБСЛУЖИВАНИЕ

♣ ПОВОРОТНЫЙ ЭЛЕКТРИЧЕСКИЙ БЛОК УПРАВЛЕНИЯ

■ Благодаря тому, что блок управления новой конструкции можно повернуть (максимум на 150°), предоставляется дополнительное удобство для проведения осмотра и обслуживания системы трубопроводов, что сокращает затраты времени.

🗱 БАЗОВЫЕ МОДУЛИ НАРУЖНЫХ БЛОКОВ

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTRV250HZAN3-B	KTRV290HZAN3-B	KTRV340HZAN3-B			
Условная производительность	HP	1-	8	10	12			
		Охлаждение	25.2	28	33.5			
Производительность	кВт	Нагрев	27	31.5	37.5			
Энергоэффективность	-	EER/COP	4.7/5.6	4.5/5.3	4.3/4.9			
Расход воздуха	м³/ч	-		12000	7.79 7.65 60 237/11			
Электропитание	В, Гц, ф	Трехфазное		380~415, 50, 3				
F (Охлаждение	5.36	6.22	7.79			
Потребляемая мощность	кВт	Нагрев	4.82	5.94	7.65			
Уровень шума	дБА	-	58	59				
Габариты	MM	ШхВхГ		990x1635x790				
Масса/заправка хладагента	кг	Нетто	219/9	219/9	237/11			
T		Диаметр для жидк.	12.7	12.7	15.9			
Трубопровод хладагента (R410A)	MM	Диаметр для газа	25.4	25.4	12 33.5 37.5 4.3/4.9 7.79 7.65 60			
Сумма индексов внутренних блоков,	•	Минимум	126	140	167.5			
подключаемых к наружному		Максимум	328	364	435.5			
Максимальное количество подключа	емых внутрен	них блоков	13	16	4.3/4.9 7.79 7.65 60 237/11 15.9 28.6 167.5 435.5			
Рабочий диапазон температур		Охлаждение		-5~48				
наружного воздуха		Нагрев		-20~24				
Рабочий диапазон температур	°C	Охлаждение		17~32				
воздуха в помещении		Нагрев	·	15~30				

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTRV400HZAN3-B	KTRV450HZAN3-B	KTRV500HZAN3-B	KTRV560HZAN3-B	KTRV615HZAN3-B
Условная производительность	HP	-	14	16	18	20	22
D	D=	Охлаждение	40	45	50	56	61.5
Производительность	кВт	Нагрев	45	50	56	63	69
Энергоэффективность	-	EER/COP	4.3/4.8	4.1/4.6	3.9/4.25	3.86/4.12	3.74/4.03
Расход воздуха	м³/ч	-	14000	14000	16000	16000	16000
Электропитание	В, Гц, ф	Трехфазное			380~415, 50, 3		
D6	D=	Охлаждение	9.30	10.98	12.82	14.51	16.44
Потребляемая мощность	кВт	Нагрев	9.38	10.87	13.18	15.29	17.12
Уровень шума	дБА	-	62	62	63	63	63
Габариты	MM	ШхВхГ			1340x1635x790		
Масса/заправка хладагента	КГ	Нетто	297/13	297/13	305/13	340/16	340/16
T		Диаметр для жидк.	15.9	15.9	19.1	19.1	19.1
Трубопровод хладагента (R410A)	MM	Диаметр для газа	31.8	31.8	31.8	31.8	31.8
Сумма индексов внутренних блоков,		Минимум	200	225	250	280	308
подключаемых к наружному		Максимум	520	585	650	728	800
Максимальное количество подключа	емых внутренн	их блоков	23	26	29	33	36
Рабочий диапазон температур	°C	Охлаждение		•	-5~48	•	•
наружного воздуха		Нагрев			-20~24		
Рабочий диапазон температур	°C	Охлаждение			17~32		
воздуха в помещении		Нагрев			15~30		

DX PRO

ДВУХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTRV-HZAN3-B	680	740	790	850	895	955	1000	1065	1115	1175	1230
Условная производительность	HP		24	26	28	30	32	34	36	38	40	42	44
	8	KTRV250HZAN3-B											
	10	KTRV290HZAN3-B		1	1	1	1						
	12	KTRV340HZAN3-B	1+1					1					
V5	14	KTRV400HZAN3-B											
Комбинация модулей	16	KTRV450HZAN3-B		1						1			
	18	KTRV500HZAN3-B			1				1+1		1		
	20	KTRV560HZAN3-B				1						1	
	22	KTRV615HZAN3-B					1	1		1	1	1	1+1
Номинальная	кВт	Охлаждение	67	73	78	84	89.5	95	100	106.5	111.5	117.5	123
производительность	KDI	Нагрев	75.0	81.5	87.5	94.5	100.5	106.5	112.0	119.0	125.0	132.0	138.0
Энергоэффективность	-	EER/COP	4.30/4.90	4.24/4.85	4.10/4.58	4.05/4.45	3.95/4.36	3.92/4.30	3.90/4.25	3.88/4.25	3.81/4.13	3.80/4.07	3.74/4.03
Электропитание	В, Гц, ф	Трехфазное					3	80~415, 50,	3				
П	кВт	Охлаждение	15.58	17.20	19.04	20.73	22.67	24.23	25.64	27.42	29.26	30.95	32.89
Потребляемая мощность	KBT	Нагрев	15.31	16.81	19.12	21.23	23.06	24.77	26.35	27.99	30.30	32.41	34.24
Сумма индексов внутренних бл	их блоков, Минимум 335 365 390 420 447.5 475 500 532.5 557.5 587.5		587.5	615									
подключаемых к наружному	подключаемых к наружному Максимум 871 949 1014 1092 1163.5 1		1235	1300	1384.5	1449.5	1527.5	1599					
Максимальное количество под	ключаемых і	внутренних блоков	39	43	46	50	53	56	59	63	64	64	64

ТРЕХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTRV-HZAN3-B	1295	1355	1405	1465	1520	1570	1615	1680	1730	1790	1845
Условная производительность	HP		46	48	50	52	54	56	58	60	62	64	66
	8	KTRV250HZAN3-B											
	10	KTRV290HZAN3-B		1	1	1	1						
	12	KTRV340HZAN3-B	1+1					1					
V6	14	KTRV400HZAN3-B											
Комбинация модулей	16	KTRV450HZAN3-B		1						1			
	18	KTRV500HZAN3-B			1				1+1		1		
	20	KTRV560HZAN3-B				1						1	
	22	KTRV615HZAN3-B	1	1	1	1	1+1	1+1	1	1+1	1+1	1+1	1+1+1
Номинальная	кВт	Охлаждение	128.5	134.5	139.5	145.5	151	156.5	161.5	168	173	179	184.5
производительность	KBT	Нагрев	144	150.5	156.5	163.5	169.5	175.5	181	188	194	201	207
Энергоэффективность	-	EER/COP	4.01/4.44	4.00/4.44	3.93/4.32	3.91/4.26	3.86/4.22	3.85/4.19	3.84/4.16	3.83/4.16	3.78/4.09	3.78/4.05	3.74/4.03
Электропитание	В, Гц, ф	Трехфазное					3	80~415, 50,	3				
	D=	Охлаждение	15.58	17.20	19.04	20.73	22.67	24.23	25.64	27.42	29.26	30.95	32.89
Потребляемая мощность кВт	KBT	Нагрев	15.31	16.81	19.12	21.23	23.06	24.77	26.35	27.99	30.30	32.41	34.24
Сумма индексов внутренних бл	оков,	Минимум	335	365	390	420	447.5	475	500	532.5	557.5	587.5	615
подключаемых к наружному		Максимум	871	949	1014	1092	1163.5	1235	1300	1384.5	1449.5	1527.5	1599
Максимальное количество поді	ключаемых в	знутренних блоков	39	43	46	50	53	56	59	63	64	64	64

ЧЕТЫРЕХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTRV-HZAN3-B	1910	1970	2020	2080	2135	2185	2230	2295	2345	2405	2460
Условная производительность	HP		68	70	72	74	76	78	80	82	84	86	88
	8	KTRV250HZAN3-B											
	10	KTRV290HZAN3-B		1	1	1	1						
	12	KTRV340HZAN3-B	1+1					1					
Vč	14	KTRV400HZAN3-B											
Комбинация модулей	16	KTRV450HZAN3-B		1						1			
	18	KTRV500HZAN3-B			1				1+1		1		
20 22	20	KTRV560HZAN3-B				1						1	
	22	KTRV615HZAN3-B	1+1	1+1	1+1	1+1	1+1	1+1+1	1+1	1+1+1	1+1+1	1+1+1	1+1+1+1
Номинальная	кВт	Охлаждение	190	196	201	207	212.5	218	223	229.5	234.5	240.5	246
производительность	КВТ	Нагрев	213	219.5	225.4	232.5	238.5	244.5	250	227	263	270	276
Энергоэффективность	-	EER/COP	3.92/4.62	3.91/4.3	3.87/4.23	3.86/4.19	3.83/4.16	3.824.14	3.81/4.13	3.81/4.13	3.77/4.07	3.77/4.05	3.74/4.03
Электропитание	В, Гц, ф	Трехфазное			•		3	80~415, 50,	3	•			
		Охлаждение	48.47	50.09	51.93	53.62	55.55	57.12	58.53	60.31	62.15	63.84	65.78
Потребляемая мощность кВт	Нагрев	46.13	51.06	53.36	55.48	57.31	59.02	60.6	62.23	64.54	66.66	68.49	
Сумма индексов внутренних бл	юков,	Минимум	950	980	1005	1035	1062.5	1090	1115	1147.5	1172.5	1202.5	1230
подключаемых к наружному		Максимум	2470	2548	2613	2691	2762.5	2834	2899	2983.5	3048.5	3126.5	3198
Максимальное количество под	ксимальное количество подключаемых внутренних блоков		64	64	64	64	64	64	64	64	64	64	64

DX PRO IV

KTRZ250/290HZAN3-TB KTRZ340/400/450/500HZAN3-TB

ПЕРЕДОВОЕ ИНВЕРТОРНОЕ РЕГУЛИРОВАНИЕ, DC-ИНВЕРТОРНЫЙ КОМПРЕССОР БОЛЬШОЙ ПРОИЗВОДИТЕЛЬНОСТИ

САМЫЙ ЭФФЕКТИВНЫЙ И ОЗОНОБЕЗОПАСНЫЙ ХЛАДАГЕНТ R410A

ВЫСОКОЭФФЕКТИВНЫЙ ТЕПЛООБМЕННИК НОВОЙ «Ф»-ОБРАЗНОЙ КОНСТРУКЦИИ С ДОПОЛНИТЕЛЬНЫМ ОХЛАЖДЕНИЕМ

МОДУЛЬНАЯ КОМПОНОВКА НАРУЖНЫХ БЛОКОВ С БОЛЬШИМ КОЛИЧЕСТВОМ ВАРИАНТОВ

DC-ИНВЕРТОРНЫЙ ВЕНТИЛЯТОР КОНДЕНСАТОРА

Мировые тенденции повышения эффективности работы климатического оборудования, энергосбережения, эксплуатационной экономичности, обеспечения высочайшего уровня комфорта требуют от компаний-производителей серьезных инновационных усилий в развитии технологий, конструирования, дизайна, расширении удобного разнообразного функционала. Своевременно откликаясь на эти запросы, компания Kentatsu DENKI придает новый импульс совершенствованию центральных систем кондиционирования DX PRO.

\$\footnote{\pi} ДОСТОИНСТВА И КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА СИСТЕМЫ DX PRO IV

- Наибольшая максимальная производительность комбинации наружных блоков 72 HP (200 кВт в режиме охлаждения).
- Высокая энергоэффективность при частичных нагрузках (до 7.6).
- Низкий уровень шума: 45 дБА.
- Наибольшее в отрасли количество внутренних блоков: до 29 на один наружный.
- Увеличение максимальной длины труб до 1000 м, перепада высот между внутренними блоками до 30 м.
- Самая современная система управления с выходом в Интернет и передовым программным обеспечением.
- Широкий диапазон рабочих температур от -20 до 48 °C.
- Полная совместимость с существующими системами управления зданием BMS по протоколам BACnet, LonWorks, Modbus, KNX.
- Длительный срок службы за счет технологии резервирования.

DX PRO IV

🗱 ШИРОКИЙ МОДЕЛЬНЫЙ РЯД, МАКСИМАЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ДО 72 НР (200 КВТ)

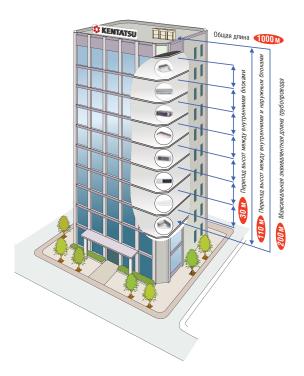
Использование нового мощного DC-инверторного компрессора позволило создать наружные блоки 6 типоразмеров производительностью до 18 HP (50 кВт). Комбинация новых модулей позволяет получать системы с диапазоном производительности от 8 до 72 HP (200 кВт) с шагом 2 HP.

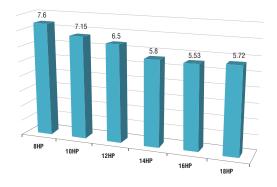
Упростилась конструкция блоков и управление компрессорами, уменьшились пиковые нагрузки на энергосистему. Возросла надежность. Достигается точная и плавная регулировка производительности в более широком диапазоне.

KTRZ250/290HZAN3-TB

KTRZ340/400/450/500HZAN3-TB

🗱 ВАРИАНТЫ КОМБИНАЦИИ НАРУЖНЫХ БЛОКОВ





Система КТ	RZ-H	8–18 HP	20-36 HP	38-54 HP	56-72 HP
Одномодульные DX PRO IV		25.2–50.0 кВт			
Двухмодульные DX PRO IV			56.0–100.0 кВт		
Трехмодульные DX PRO IV				106.0–150.0 кВт	
Четырехмодульные DX PRO IV					156.0–200.0 кВт
Максимальное количество внутренни блоков	1X	13–29	33-53	63-64	64

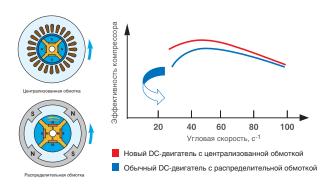
🗱 УВЕЛИЧЕНИЕ ДЛИНЫ И ПЕРЕПАДОВ МАГИСТРАЛЬНЫХ ЛИНИЙ

Применение новых технологических и конструкторских решений позволило увеличить максимально допустимые длины трубопроводов и перепад высот между блоками. Теперь можно предложить больше вариантов размещения наружных и внутренних блоков, систему можно устанавливать в более высоких зданиях. Можно значительно увеличить площади кондиционирования.

Показатель энергоэффективности системы DX PRO IV при тепловых нагрузках в климатических условиях России.

ВЫСОКАЯ ЭНЕРГОЭФФЕКТИВНОСТЬ

Усовершенствование конструкции, оптимизация рабочих режимов, новые технологии повысили энергоэффективность системы.



ВЫСОКИЕ ТЕХНОЛОГИИ KENTATSU DX PRO IV

Система DX PRO IV относится к самой энергоэффективной разновидности центральных многозональных систем кондиционирования — к системам непосредственного охлаждения. Используется инверторный принцип регулирования производительности компрессора и экологически безопасный хладагент R410A. В каждом наружном блоке DX PRO IV работает компрессор с инверторным приводом, который позволяет регулировать производительность системы в широком диапазоне. Благодаря инверторной технологии в каждый момент времени производительность системы по теплу и холоду соответствует тепловой нагрузке помещений, что позволяет сократить до минимума потребление электроэнергии. Наибольшую энергоэффективность система DX PRO имеет при тепловой нагрузке в пределах 40-70%, то есть в том самом диапазоне, в котором система работает большую часть времени. В этих условиях холодильный коэффициент системы достигает рекордного значения 7.4.

🗱 DC-ИНВЕРТОРНЫЙ КОМПРЕССОР НОВОЙ КОНСТРУКЦИИ

Для работы с инверторным приводом в системе DX PRO IV используется специально сконструированный спиральный DC-инверторный компрессор с частотой вращения в диапазоне 20-200 Гц. Компрессоры большой производительности оптимизированы для достижения наибольшей эффективности при средних нагрузках. Во время эксплуатации системы при частичных нагрузках и переменных температурных условиях потребитель получает оборудование с существенно более высокой сезонной эффективностью.

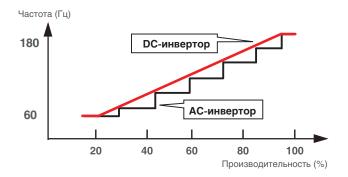
Изменена конструкция обмоток статора: их равномерное распределение позволяет оптимизировать магнитное поле, снизить потребление электроэнергии, улучшить условия охлаждения и повысить надежность электродвигателя.

В роторе используются вставки с мощными постоянными магнитами из редкоземельного материала неодима, которые существенно увеличивают крутящий момент и расширяют диапазон эксплуатационных параметров работы компрессора.

Особое внимание уделяется системе смазки, приспособленной к работе в условиях переменной производительности. Компрессор снабжен встроенной системой маслоотделения, которая обеспечивает смазку подшипников при любых условиях и уменьшает тепловые потери. Подшипники надежно смазываются даже при очень низкой скорости вращения, поскольку подача масла осуществляется под действием перепада давлений нагнетания и всасывания.

DX PRO IV

🗱 МАГНИТОЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА


Для привода компрессора используется магнитоэлектрический двигатель постоянного тока. Такой магнитоэлектрический двигатель является бесколлекторным электроннокоммутируемым приводом с цифровым микропроцессорным управлением и имеет ряд преимуществ.

- Малые габариты.
- Высокая надежность (отсутствие коллекторно-щеточного узла).
- Не создает радиопомех.
- Взрыво- и пожаробезопасность (нет искрения).
- Низкий уровень шума и вибраций.
- Высокая плавность вращения вала в широком диапазоне регулирования даже при очень низких оборотах.
- Хорошие динамические качества: короткое время ускорения и торможения.
- Высокий КПД (низкие тепловыделения). При низких оборотах вращения вала КПД магнитоэлектрического двигателя на 20% выше, чем у других типов электродвигателей.

🗱 ИНВЕРТОРНАЯ ТЕХНОЛОГИЯ УПРАВЛЕНИЯ ПРИВОДОМ КОМПРЕССОРА

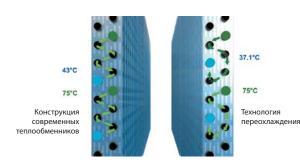
Контроллер системы использует для управления широтноимпульсную модуляцию (ШИМ), что обеспечивает:

- Повышение точности и диапазона регулирования от 10 до 100%.
- Высокую энергоэффективность.
- Снижение потребления электроэнергии.
- Низкий уровень шума.
- Снижение пиковых нагрузок на энергосистему.

Инверторное управление системы DX PRO IV не создает электромагнитных помех и полностью соответствует европейским стандартам ЕМС (электромагнитной совместимости). Контроллер имеет встроенную защиту от скачков напряжения и перегрева и гарантирует безопасную работу при любых условиях эксплуатации.

СИСТЕМА ВОЗВРАТА МАСЛА

Кроме отделения масла в компрессоре система DX PRO IV имеет специальную систему возврата масла во все компрессоры и автоматически активируемый масловозвратный цикл. Таким образом, исключена возможность случайного включения вентилятора внутреннего блока. Специальная система возврата масла в компрессор позволяет размещать оборудование одной системы на значительных расстояниях. Максимальная длина труб между внутренним и наружным блоком составляет 200 м, максимальный перепад высот между ними — 110 м. Такие широкие пределы предоставляют проектировщикам больше возможностей для гибкого проектирования и размещения оборудования в оптимальных местах.

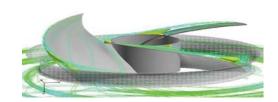

Во время работы системы в режиме нагрева периодически требуется оттайка теплообменников наружных блоков. В системе DX PRO IV применена интеллектуальная система оттайки, которая позволяет значительно сократить время оттайки: до 7 минут. Теплопроизводительность системы в этом случае меняется незначительно и проведение цикла оттайки практически незаметно для потребителя.

В зависимости от условий эксплуатации в системе циркулирует различное количество хладагента.

🗱 ТЕХНОЛОГИЯ РЕГУЛИРОВАНИЯ КОЛИЧЕСТВА ХЛАДАГЕНТА

Избыточное и недостаточное количество хладагента ухудшает работу системы. В системе DX PRO IV имеется аккумулятор высокого давления, в котором скапливается избыточный хладагент и обеспечивается оптимальное количество циркулирующего хладагента. Большой объем аккумулятора позволяет перекачать в него весь хладагент из системы для проведения сервисных работ.

❖ ТЕПЛООБМЕННИК НАРУЖНОГО БЛОКА НОВОЙ КОНСТРУКЦИИ С ТЕХНОЛОГИЕЙ ПЕРЕОХЛАЖДЕНИЯ



Новая δ-образная конфигурация расположения трубок теплообменника позволяет достичь 6 градусного переохлаждения хладоносителя. При наружной температуре 35 °C хладагент охлаждается до 37.1 °C. Скорость теплообмена в конденсаторе повысилась, снизилось сопротивление в системе, выросла производительность. Благодаря примененной технологии стало возможно увеличение общей длины трубопровода до 1000 м. В то же время конструкция теплообменного контура наружного блока стала проще, масса меньше.

♣ НОВЫЙ DC-ВЕНТИЛЯТОР НАРУЖНОГО БЛОКА

DC вентилятор имеет 18 ступеней регулирования

Для привода используется новый электродвигатель постоянного тока DC, который позволяет регулировать частоту вращения вентилятора в широком диапазоне.

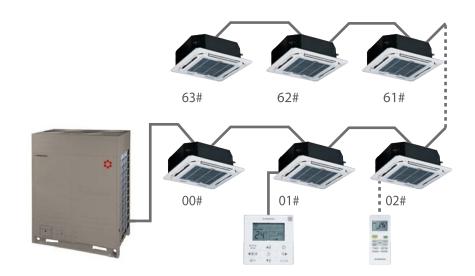
Шаг изменения частоты вращения ротора 5 об./мин. обеспечивает точную подстройку под параметры работы инверторного компрессора для повышения повышения эффективности при частичной нагрузке.

- Экономия электроэнергии достигает 45%.
- Увеличен расход воздуха.
- Снижен уровень шума.
- Увеличена прочность.
- Снижено аэродинамическое сопротивление решетки и проточной части.
- Максимальный напор вентилятора может достигать 60 Па.
- Напор вентилятора можно менять переключателем на наружном блоке.

DX PRO IV

НАЗНАЧЕНИЕ ПРИОРИТЕТНОГО РЕЖИМА РАБОТЫ

С помощью переключателя на наружном блоке можно задать разные возможности переключения режимов:


- режим нагрева;
- режим охлаждения;
- режим работы по главному внутреннему блоку.

🗱 ИЗМЕНЕНИЕ ИНДЕКСА ВНУТРЕННЕГО БЛОКА

В системе DX PRO IV предусмотрена уникальная возможность изменения производительности внутреннего блока. С помощью переключателя на внутреннем блоке можно принудительно уменьшить его производительность. Такая необходимость часто возникает при комплектации систем с большим количеством внутренних блоков.

🗱 АВТОМАТИЧЕСКАЯ АДРЕСАЦИЯ ВНУТРЕННИХ БЛОКОВ

При запуске системы наружный блок автоматически опознает внутренние блоки и присваивает им адреса. С помощью пультов управления можно изменить адрес внутреннего блока. К одной системе может быть подключено до 64 внутренних блоков.

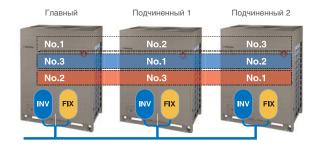
🗱 БЕСШУМНАЯ РАБОТА НАРУЖНЫХ БЛОКОВ

Уровень шума наружных блоков снижен для всех режимов работы. Кроме того, имеется возможность установки бесшумного режима работы со значительным снижением уровня шума на 8 дБА и заданием времени начала и окончания режима. Бесшумный режим может быть автоматически активирован ночью через 8 часов после достижения максимальной дневной температуры наружного воздуха.

🜣 СВОБОДНАЯ КОМБИНАЦИЯ НАРУЖНЫХ БЛОКОВ В ОДНОЙ СИСТЕМЕ

Различные наружные блоки в разных комбинациях могут быть использованы для создания системы большой производительности. Система DX PRO IV обладает максимальной производительностью 72 HP (200 кВт).

😂 РАВНОМЕРНАЯ ВЫРАБОТКА РЕСУРСА


Если в одной системе используются несколько наружных блоков, то каждый из них может быть главным. В системе может быть установлена автоматическая смена главного наружного блока, например, после окончания каждого масловозвратного цикла. В этом случае выработка ресурса всех компрессоров будет примерно одинаковой.

DY DDAIV

‡ ТЕХНОЛОГИЯ ДВОЙНОГО РЕЗЕРВИРОВАНИЯ

Если в одной системе используются несколько наружных блоков, то их «живучесть» определяется двумя возможностями. Если в наружном блоке неисправен один компрессор, то система может краткосрочно продолжить работу с остальными исправными компрессорами. Если же в системе неисправен один из наружных блоков, то система может краткосрочно продолжить работу с остальными исправными наружными блоками.

🗱 УЧЕТ ПОТРЕБЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ

При специальном заказе на каждый наружный блок может быть установлен счетчик электроэнергии, потребляемой наружным блоком.

🗱 МОДУЛЬ ВКЛЮЧЕНИЯ ВНУТРЕННИХ БЛОКОВ ДЛЯ ГОСТИНИЦ

В номерах гостиниц включение и выключение внутренних блоков может осуществляться с помощью гостиничной карты (КСМ01). Это позволяет сократить расход электроэнергии и повысить безопасность эксплуатации системы кондиционирования.

№ МОДУЛИ КАН-01/02/03В ДЛЯ ПОДКЛЮЧЕНИЯ НАРУЖНОГО БЛОКА К
ИСПАРИТЕЛЮ ЦЕНТРАЛЬНОГО КОНДИЦИОНЕРА ИЛИ ВНУТРЕННИМ БЛОКАМ БЕЗ ЭРВ.

При помощи модулей КАН-01/02/03В наружный блок системы DX PRO можно подключить к испарителю приточной установки (центрального кондиционера), либо ко внутреннему блоку кондиционера без электронно-расширительного вентиля. В состав модуля подключения входят блок, объединяющий секции управления и электронного расширительного вентиля, набор температурных датчиков, проводной пульт управления и выносной дисплей. Основное назначение модуля — осуществление плавного управления производительностью кондиционирования и индикация ошибок работы на выносном дисплее.

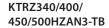
Дополнительные возможности:

- Подключение к центральному пульту управления системы DX PRO;
- Изменение скорости вращения вентилятора приточной установки или внутреннего блока кондиционера;
- Управление работой дренажного насоса по сигналу датчика уровня воды в поддоне;
- Вывод сигнала ошибки/сбоя на внешние устройства.
- До четырех модулей КАН-01/02/03В можно подключать параллельно друг другу с использованием рефнетов. Максимальная производительность подключенного испарителя может быть увеличена до 224 кВт.

‡ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Блок управления			KAH-01B	KAH-02B	KAH-03B
Электропитание		В, Гц, ф		220-240, 50, 1	
Холодопроизводительность подключаемого испарителя		кВт	9~20	20.1~33	40~56
	Входящая	мм	8	12.7	16
азмер трубы (диаметр)	Выходящая	мм	8	12.7	16
Габариты		мм		375x350x150	

DX PRO IV


СИСТЕМЫ DX PRO IV

R410A

Инверторные технологии, применяемые в системе DX PRO IV, обеспечивают плавное изменение производительности от 10 до 100%, что повышает эффективность работы системы кондиционирования и обеспечивает комфорт для пользователя. Наружные блоки системы DX PRO IV имеют компактные размеры и модульную структуру, все это максимально упрощает монтажные работы. Все 6 модулей инверторных наружных блоков производительностью 8, 10, 12, 14, 16 и 18 НР могут использоваться в качестве самостоятельных наружных блоков, так и в составе модульной системы большой производительности.

Кроме одномодульной предусмотрены еще три типа компоновок инверторных наружных блоков: двух-, трех- и четырехмодульная. Это позволяет расширить диапазон номинальной производительности системы DX PRO IV до 72 HP (200 кВт). Максимальная производительность в 72 HP является на сегодняшний день одним из наибольших значений для систем этого класса в отрасли. В таблице приведены рекомендуемые комбинации модулей наружных блоков системы DX PRO IV для всего диапазона производительности от 8 до 72 HP (от 25 до 200 кВт). Максимальное количество внутренних блоков зависит от производительности системы.

KTRZ250/ 290HZAN3-TB

Компоновка наружного блока		Оді	номо	дуль	ная		Двухмодульная Трехмодульная						Че	гыре	хмод	цулы	ная																
Условная производ., НР	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72
Производительность, кВт	25.2	28	33.5	40	45	50	56	61.5	68	73	78	85	90	95	100	106	113	118	123	128	135	140	145	150	156	163	168	173	178	185	190	195	200
Оптимальная комбинация модулей	8	10	12	14	16	18	10x2	10+12	10+14	10+16	10+18	14+16	14+18	16+18	18x2	10x2+18	10+14+16	10+16x2	10+16+18	10+18x2	14+16+18	14+18x2	16+18x2	18x3	10x2+18x2	10+14+16+18	10+14+18x2	10+16+18x2	10+16+18x2	10+18x3	14+16+18x2	14+18x3	18x4
Максимальное количество внутренних блоков в системе	13	16	20	23	26	29	33	36	39	43	46	50	53	56	59	63									64								

Суммарная длина трубопровода хладагента может достигать 1000 м, максимальная длина трубопровода от наружного блока до наиболее удаленного внутреннего блока — 200 м (эквивалентная) и 175 м (фактическая). Максимальный перепад высот между наружным и вну-

тренним блоком составляет 70 м, если первый из них выше второго, и 110 м, если первый из них ниже второго, а максимальный перепад высот между внутренними блоками — 30 м. Максимальное удаление внутреннего блока от первого разветвителя составляет 40 м (90 м)*.

•

БАЗОВЫЕ МОДУЛИ НАРУЖНЫХ БЛОКОВ

DAJODDIL MODJ.	, , , , , , , , , , , , , , , , , , , ,	ו אוטו וואר ט	IONOD					
модель			KTRZ250HZAN3-TB	KTRZ290HZAN3-TB	KTRZ340HZAN3-TB	KTRZ400HZAN3-TB	KTRZ450HZAN3-TB	KTRZ500HZAN3-TB
Условная производительность	НР	-	8	10	12	14	16	18
Произродитов ности	кВт	Охлаждение	25.2	28.0	33.5	40	45	50
Производительность	KDI	Нагрев	27.0	31.5	37.5	45	50	56
Сезонный коэффициент энергоэффективности	-	-	7.4 - 7.6	6.96 - 7.15	6.4 - 6.5	5.7 - 5.8	5.53	5.7
Расход воздуха	м³/ч	-	11500	11500	15100	16530	18486	14700
Электропитание	В, Гц, ф	Трехфазное			380,	50, 3		
П6	кВт	Охлаждение	5.88	7.2	9.05	12.31	14.02	15.2
Потребляемая мощность	КВТ	Нагрев	6.15	7.61	8.99	11.19	12.79	14.25
Уровень шума	дБА	-	57	57	59	60	60	61
Габариты	ММ	(ШхВхГ)	960x1615x765	960x1615x765	1250x1615x765	1250x1615x765	1250x1615x765	1250x1615x765
Масса/заправка хладагента	КГ	Нетто	198/9	198/9	268/11	280/13	280/13	300/16
Трубопровод хладагента	мм	Диаметр для жидкости	12.7	12.7	12.7	15.9	15.9	19.1
(R410A)		Диаметр для газа	25.4	25.4	25.4	31.8	31.8	31.8
Сумма индексов внутренни	х блоков,	Минимум	126	140	168	200	225	250
подключаемых к наружном	У	Максимум	328	364	436	520	585	650
Максимальное количество внутренних блоков	тодключае	ИЫХ	13	16	20	23	26	29
Рабочий диапазон темпе-	°C	Охлаждение			-5-	-48		
ратур наружного воздуха		Нагрев			-20	~27		
Рабочий диапазон	°C	Охлаждение			17·	~32	·	
температур воздуха в помещении	'	Нагрев			15-	~30		

^{*} Длина трубопровода от первого разветвителя до внутреннего при соблюдении ряда условий может быть увеличена до 90 м.

‡ БАЗОВЫЕ МОДУЛИ НАРУЖНЫХ БЛОКОВ

ДВУХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTRZ-HZAN3-TB	580	630	690	740	790	850	900	950	1000
Условная производительность	HP		20	22	24	26	28	30	32	34	36
	8	KTRZ250HZAN3-TB									
	10	KTRZ290HZAN3-TB	1+1	1	1	1	1				
v 6	12	KTRZ340HZAN3-TB		1							
Комбинация модулей	14	KTRZ400HZAN3-TB			1			1	1		
	16	KTRZ450HZAN3-TB				1		1		1	
	18	KTRZ500HZAN3-TB					1		1	1	1+1
Номинальная	D=	Охлаждение	56.0	61.5	68.0	73.0	78.0	85.0	90.0	95.0	100.0
производительность	кВт	Нагрев	63.0	69.0	76.5	81.5	87.5	95.0	101.0	106.0	112.0
Энергоэффективность	-	EER/COP	3.9/4.1	3.8/4.2	3.49/4.07	3.44/4.0	3.48/4.0	3.23/3.96	3.27/3.97	3.25/3.92	3.29/3.93
Электропитание	В, Гц, ф	Трехфазное					380, 50, 3				
П (Охлаждение	14.4	16.25	19.51	21.22	22.4	26.33	27.51	29.22	30.4
Потребляемая мощность	кВт	Нагрев	15.22	16.6	18.8	20.4	21.86	23.98	25.44	27.04	28.5
Сумма индексов внутренних бл	оков,	Минимум	280	308	340	365	390	425	450	475	500
подключаемых к наружному		Максимум	728	800	884	949	1014	1105	1170	1235	1300
Максимальное количество под	ксимальное количество подключаемых внутренних блоков		33	36	39	43	46	50	53	56	59

ТРЕХМОДУЛЬНАЯ КОМПОНОВКА

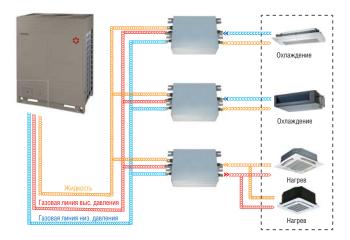
модель		KTRZ-HZAN3-TB	1080	1140	1190	1240	1290	1350	1400	1450	1500
Условная производительность	HP		38	40	42	44	46	48	50	52	54
	8	KTRZ250HZAN3-TB									
	10	KTRZ290HZAN3-TB	1+1	1	1	1	1				
1/ · · ·	12	KTRZ340HZAN3-TB									
Комбинация модулей	14	KTRZ400HZAN3-TB		1				1	1		
	16	KTRZ450HZAN3-TB		1	1+1	1		1		1	
	18	KTRZ500HZAN3-TB	1			1	2	1	1+1	1+1	1+1+1
Номинальная	кВт	Охлаждение	106.0	113.0	118.0	123.0	128.0	135.0	140.0	145.0	150.0
производительность	KBT	Нагрев	119.0	126.5	131.5	137.5	143.5	151.0	157.0	162.0	168.0
Энергоэффективность	-	EER/COP	3.58/4.04	3.37/4.0	3.35/3.96	3.38/3.97	3.40/3.97	3.25/3.95	3.28/3.96	3.26/3.92	3.293.93
Электропитание	В, Гц, ф	Трехфазное					380, 50, 3				
D6	D=	Охлаждение	29.6	33.53	35.24	36.42	37.6	41.53	42.71	44.42	45.6
Потребляемая мощность	кВт	Нагрев	29.47	31.59	33.19	34.65	36.11	38.23	39.69	41.29	42.75
Сумма индексов внутренних бл	оков,	Минимум	530	565	590	615	640	675	700	725	750
подключаемых к наружному	Максимум	1378	1469	1534	1599	1664	1775	1820	1885	1950	
Максимальное количество под	аксимальное количество подключаемых внутренних блоков		63	64	64	64	64	64	64	64	64

ЧЕТЫРЕХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTRZ-HZAN3-TB	1580	1640	1690	1740	1790	1850	1900	1950	2000
Условная производительность	HP		56	58	60	62	64	66	68	70	72
	8	KTRZ250HZAN3-TB									
	10	KTRZ290HZAN3-TB	1+1	1	1	1	1				
	12	KTRZ340HZAN3-TB									
Комбинация модулей	14	KTRZ400HZAN3-TB		1	1			1	1		
	16	KTRZ450HZAN3-TB		1		1		1		1	
	18	KTRZ500HZAN3-TB	1+1	1	1+1	1+1	1+1+1	1+1	1+1+1	1+1+1	1+1+1+1
Номинальная	кВт	Охлаждение	156.0	163.0	168.0	173.0	178.0	185.0	190.0	195.0	200.0
производительность	KBT	Нагрев	175.0	182.5	188.5	193.5	199.5	207.0	213.0	218.0	224.0
Энергоэффективность	-	EER/COP	3.48/4.0	3.34/3.98	3.37/3.99	3.35/3.96	3.37/3.96	3.26/3.94	3.28/3.95	3.27/3.93	3.29/3.93
Электропитание	В, Гц, ф	Трехфазное		•		•	380, 50, 3	•			
П		Охлаждение	44.8	48.7	49.9	51.6	52.8	56.7	57.9	59.6	60.8
Потребляемая мощность	кВт	Нагрев	43.7	45.8	47.3	48.9	50.4	52.5	53.9	55.5	57.0
Сумма индексов внутренних бл	оков,	Минимум	780	815	840	865	890	925	950	975	1000
подключаемых к наружному	Максимум	2028	2119	2184	2249	2313	2405	2470	2535	2600	
Максимальное количество под	ключаемых і	внутренних блоков	64	64	64	64	64	64	64	64	64

DX PRO IV

🗱 СИСТЕМЫ DX PRO IV HR С РЕКУПЕРАЦИЕЙ ТЕПЛОТЫ


Трехтрубные системы DX PRO IV HR – DC-инверторные центральные системы кондиционирования. Обладая всеми преимуществами стандартных двухтрубных систем с тепловыми насосами, они позволяют реализовать режим одновременного нагрева одной зоны объекта и охлаждения другой за счет рекуперации энергии. В результате энергоэффективность системы повышается.

- Модельный ряд включает 5 базовых наружных блоков производительностью 22.0, 25.0, 33.5, 40.0 и 45.0 кВт, которые можно собрать в модульную систему до 4 блоков общей производительностью 22.0–180 кВт с шагом ~5 кВт.
- Впервые в системах с рекуперацией используются только инверторные двигатели компрессоров и вентиляторов постоянного тока.
- Максимальное количество подключаемых внутренних блоков из линейки DX PRO увеличено до 64.
- В системах используются новые блоки KMS-Z и KMS-ZD, которые в соответствии с заданным режимом работы внутренних блоков (охлаждение или обогрев) распределяют потоки хладагента между ними, обеспечивая одновременное охлаждение и обогрев разных помещений

за один цикл циркуляции хладагента между компрессором и внутренними блоками. Благодаря этому энергоэффективность EER работы в смешанном режиме достигает значения 7.0.

- Широкий температурный рабочий диапазон. Система DX PRO IV HR стабильно функционирует при температурах от -5 до +48 °C при работе на охлаждение, от -20 до +24 °C при работе на обогрев, от -5 до +24 °C при смешанном режиме.
- В наличии блоки КМS шести видов КМS-Z: на 1, 2, 4 и 6 групп (возможно подключение до 24 внутренних блоков), а также 2 КМS-ZD блока переключения режимов одного внутреннего блока большой производительности (до 28 и 56 кВт).
- Большая протяженность трубопроводов. Общая длина может достигать 1000 м, перепад высот между наружным и внутренним блоками до 100 м, между внутренними блоками до 30 м, длина от блока KMS до наиболее внутреннего удаленного блока 40 м.

- * КОНСТРУКЦИЯ ТЕПЛООБМЕННИКА НАРУЖНОГО БЛО-КА С ДВУМЯ НЕЗАВИСИМЫМИ ПАРАЛЛЕЛЬНЫМИ ТЕПЛО-ОБМЕННЫМИ КОНТУРАМИ, ВЕНТИЛЯТОРАМИ И ЭЛЕК-ТРОННО-РАСШИРИТЕЛЬНЫМИ ВЕНТИЛЯМИ.
- ☼ Оптимизирует нагрузку на теплообменник в точном соответствии с текущими запросами на кондиционирование. В некоторых случаях работает только один контур.
- ❖ Обеспечивает непрерывный обогрев помещений в холодный период. В случае обледенения контуры теплообменника оттаивают поочередно, поэтому уровень комфорта в помещениях не снижается.

💠 БАЗОВЫЕ МОДУЛИ НАРУЖНЫХ БЛОКОВ

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KURZ250HZAN3-B	KURZ290HZAN3-B	KURZ340HZAN3-B	KURZ400HZAN3-B	KURZ450HZAN3-B
Условная производительность	НР	-	8	10	12	14	16
Произродитовиности	кВт	Охлаждение	25.2	28.0	33.5	40.0	45.0
Производительность	KDI	Нагрев	27.0	31.5	37.5	45.0	50.0
Энергоэффективность	-	EER/COP	4.4/4.50	4.2/4.30	4.15/4.30	3.54/4.02	3.40/3.91
Расход воздуха	м³/ч	-	12000	12000	13000	15000	15000
Электропитание	В, Гц, ф	Трехфазное			380~415, 50, 3		
D6	D=	Охлаждение	5.73	6.67	8.07	11.30	13.24
Потребляемая мощность	кВт	Нагрев	6.00	7.33	8.72	11.19	12.79
Уровень шума	дБА	-	57	57	58	60	60
Габариты	ММ	ШхВхГ		•	1250x1615x765		
Масса/заправка хладагента	кг	Нетто	255/10	255/10	255/10	303/13	303/13
		Диаметр для жидк.	9.53	12.7	12.7	15.9	15.9
Трубопровод хладагента (R410A)	мм	Диаметр для газа	22.2	22.2	25.4	28.6	28.6
(ITTOA)		Диаметр для газа (выс. давл.)	19.1	19.1	19.1	22.2	22.2
Сумма индексов внутренних	с блоков,	Минимум	126	140	162	200	225
подключаемых к наружному	,	Максимум	327	364	435	520	585
Максимальное количество г	одключаемых	внутренних блоков	13	16	20	23	26
Рабочий диапазон		Охлаждение			-5~48		
температур	°C	Нагрев			-20~24		
наружного воздуха		Охлаждение и нагрев			-5~24		
абочий диапазон		Охлаждение			17~32		
температур воздуха в помещении	°C	Нагрев			до 27		

ДВУХМОДУЛЬНАЯ КОМПОНОВКА

модель		KURZ-HZAN3-B	540	580	630	690	740	800	850	900
Условная производительность	HP		18	20	22	24	26	28	30	32
	8	KURZ250HZAN3-B	1							
	10	KURZ290HZAN3-B	1	1+1	1	1	1			
Комбинация модулей	12	KURZ340HZAN3-B			1					
	14	KURZ400HZAN3-B				1		1+1	1	
	16	KURZ450HZAN3-B					1		1	1+1
Номинальная производительность кВт		Охлаждение	53.2	56.0	61.5	68.0	73.0	80.0	85.0	90.0
	KBT	Нагрев	58.5	63.0	69.0	76.5	81.5	90.0	95.0	100.0
Энергоэффективность	-	EER/COP	4.29/4.39	4.20/4.30	4.17/4.30	3.78/4.13	3.67/4.05	3.54/3.54	3.46/3.96	3.40/3.91
Электропитание	В, Гц, ф	Трехфазное				380~41	5, 50, 3			
Б		Охлаждение	12.4	13.3	14.7	18.0	19.9	22.6	24.5	26.5
Потребляемая мощность	кВт	Нагрев	13.3	14.7	16.1	18.5	20.1	22.4	24.0	25.6
Уровень шума	дБА	-	61	61	62	63	63	64	64	64
Сумма индексов внутренни	х блоков,	Минимум	270	290	315	345	370	400	425	450
подключаемых к наружном	y	Максимум	702	754	819	897	962	1040	1105	1170
Максимальное количество	подключаемых	внутренних блоков	29	33	36	39	43	46	50	53

ТРЕХМОДУЛЬНАЯ КОМПОНОВКА

модель		KURZ-HZAN3-B	980	1030	1080	1140	1200	1250	1300	1350
Условная производительность	HP		34	36	38	40	42	44	46	48
	8	KURZ250HZAN3-B								
	10	KURZ290HZAN3-B	1+1	1+1	1	1				
Комбинация модулей	12	KURZ340HZAN3-B			1					
	14	KURZ400HZAN3-B	1			1	1+1+1	1+1	1	
	16	KURZ450HZAN3-B		1	1	1		1	1+1	1+1+1
Номинальная производительность	кВт	Охлаждение	96	101	106.5	113	120	125	130	135
	KBT	Нагрев	108	113	119	126.5	135	140	145	150
Энергоэффективность	-	EER/COP	3.90/4.18	3.80/4.12	3.81/4.13	3.62/4.04	3.54/4.02	3.49/3.98	3.44/3.94	3.40/3.91
Электропитание	В, Гц, ф	Трехфазное				380~4	15, 50, 3			
П (Охлаждение	24.64	26.58	27.98	31.21	33.9	35.84	37.78	39.72
Потребляемая мощность	кВт	Нагрев	25.85	27.45	28.84	31.31	33.57	35.17	36.77	38.37
Уровень шума	дБА	-	65	65	65	66	67	67	67	67
Сумма индексов внутренни:	х блоков,	Минимум	490	515	540	570	600	625	650	675
подключаемых к наружному	y	Максимум	1274	1339	1404	1482	1560	1625	1690	1755
Максимальное количество і	подключаемых	внутренних блоков	56	59	63	64	64	64	64	64

💠 БАЗОВЫЕ МОДУЛИ НАРУЖНЫХ БЛОКОВ

ЧЕТЫРЕХМОДУЛЬНАЯ КОМПОНОВКА

модель		KURZ-HZAN3	1440	1480	1530	1590	1650	1700	1750	1800
Условная производительность	HP		50	52	54	56	58	60	62	64
	8	KURZ250HZAN3-B	1							
	10	KURZ290HZAN3-B	1	1+1	1	1				
Комбинация модулей	12	KURZ340HZAN3-B			1					
	14	KURZ400HZAN3-B				1	1+1+1	1+1	1	
	16	KURZ450HZAN3-B	1+1	1+1	1+1	1+1	1	1+1	1+1+1	1+1+1+1
Номинальная производительность	D-	Охлаждение	143.2	146.0	151.5	158.0	165.0	170.0	175.0	180.0
	кВт	Нагрев	158.5	163.0	169.0	176.5	185.0	190.0	195.0	200.0
Энергоэффективность	-	EER/COP	3.68/4.07	3.67/4.05	3.68/4.06	3.55/4.00	3.50/3.99	3.46/3.96	3.43/3.93	3.40/3.91
Электропитание	В, Гц, ф	Трехфазное				380~4	5, 50, 3			•
П (Охлаждение	38.9	39.8	41.2	44.5	47.1	49.1	51.0	53.0
Потребляемая мощность	кВт	Нагрев	38.9	40.2	41.6	44.1	46.4	48.0	49.6	51.2
Уровень шума	дБА	-	68	68	68	68	69	69	69	69
Сумма индексов внутренни	х блоков,	Минимум	720	740	765	795	825	850	875	900
подключаемых к наружному		Максимум	1872	1924	1989	2067	2145	2210	2275	2340
Максимальное количество подключаемых внутренних блоков		64	64	64	64	64	64	64	64	

РАСПРЕДЕЛИ	ИТЕЛЬНЫЙ БЛОН ПОВЕТЬНЫЙ ВОВЕТЬНЫЙ В	ζ	KMS-01Z	KMS-02Z	KMS-04Z	KMS-06Z	KMS-02ZD	KMS-04ZD	
Максимальная сумма индексов подключаемых внутренних блоков кВт			кВт	16	28	45	45	20~28	40~56
Количество подключаемых внутренних блоков			-	4	8	16	24	1	1
Габариты (ШхВхГ)			ММ	630x225x600	630x225x600	960xx225x600	960xx225x600	630x225x600	960xx225x600
Bec			КГ	18.0	19.5	31	35	19.5	31
		Диаметр для жидкости		9.5	12.7	15.9	15.9	12.7	15.9
	к наружному блоку	Диаметр для газа (выс. давление)	мм	15.9	19.1	22.2	22.2	19.1	22.2
Трубопровод хладагента	груоопровод	Диаметр для газа (низк. давление)		19.1	25.4	31.8	31.8	25.4	31.8
	к внутреннему	Диаметр для жидкости		9.53	9.53	9.53	9.53	9.53	9.53
блоку	Диаметр для газа	ММ	15.9	15.9	15.9	15.9	15.9	15.9	

R410A

🗱 НАРУЖНЫЕ БЛОКИ БОЛЬШОЙ ПРОИЗВОДИТЕЛЬНОСТИ DX PRO INDIVIDUAL

KTRZ560/615/670HZAN3-B

KTRZ730/785/850/900HZAN3-B

■ Наружные блоки большой производительности системы DX PRO обладают всеми достоинствами центральной интеллектуальной системы кондиционирования DX PRO, за исключением того, что не могут объединяться в многомодульные системы и используются только как самостоятельные наружные блоки. Наружные блоки просты в монтаже, обладают высоким уровнем надежности и минимальной занимаемой площадью для установки и являются идеальным решением для кондиционирования небольших и средних зданий коммерческого и жилого типа.

■ Линейка наружных блоков типа KTRZ-HZAN3-В представлена семью моделями: 56.0, 61.5, 67.0, 73.0, 78.5, 85.0, 90 кВт. В зависимости от мощности, к одному наружному блоку можно присоединить максимально от 33 до 53 внутренних блоков. Суммарная длина трубопровода хладагента составляет 1000 м, максимальная длина от наружного блока до

наиболее удаленного внутреннего блока равна 175 м (эквивалентная длина 200 м). Максимальный перепад высот между наружным и внутренним блоком достигает 110 м (70 м, если наружный блок расположен ниже внутренних).

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTRZ560HZAN3-B	KTRZ615HZAN3-B	KTRZ670HZAN3-B		
Условная производительность	HP	-	20	22	24		
		Охлаждение	56.0	61.5	67.0		
Производительность	кВт	Нагрев	63.0	69.0	75.0		
Энергоэффективность	-	EER/COP	3.3/3.94	3.27/3.86	3.22/3.79		
Расход воздуха	М³/Ч	-	20000	23000	23000		
Электропитание	В, Гц, ф	Трехфазное		380~415, 50, 3			
Потробласила исписат	кВт	Охлаждение	17.0	18.8	20.8		
Потребляемая мощность		Нагрев	в 16.0 17.9		19.8		
Уровень шума	дБА	-	62	63	63		
Габариты	MM	ШхВхГ	1390x1615x765	1585x1615x765			
Масса/заправка хладагента	КГ	Нетто	360/17	385/18.5	390/18.5		
Трубопровод хладагента		Диаметр для жидкости	19.1	19.1	19.1		
(R410A)	MM	Диаметр для газа	31.8	31.8	31.8		
Сумма индексов внутренних	с блоков,	Минимум	266	307	339		
подключаемых к наружному	<u>'</u>	Максимум	728	799	871		
Максимальное количество г	одключаемых	внутренних блоков	33	36	39		
Рабочий диапазон	°C	Охлаждение		-5~48			
температур наружного воздуха	٠,	Нагрев	-20~27				
Рабочий диапазон	°C	Охлаждение		17~32			
температур воздуха в помещении	C	Нагрев		до 30			

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTRZ730HZAN3-B	KTRZ785HZAN3-B	KTRZ850HZAN3-B	KTRZ900HZAN3-B		
Условная производительность	HP	-	26	28	30	32		
	D=	Охлаждение	73	78.5	85	90		
Производительность	кВт	Нагрев	81.5	87.5	95	100		
Энергоэффективность	-	EER/COP	3.27/3.96	3.24/3.91	3/3.65	3.16/3.77		
Расход воздуха	М³/Ч	-	33100					
Электропитание	В, Гц, ф	Трехфазное	380~415, 50, 3					
п (кВт	Охлаждение	22.3	24.2	28.3	28.5		
Потребляемая мощность	KDI	Нагрев	20.6	22.4	26	26.5		
Уровень шума	дБА	-	64	64	65	65		
Габариты	MM	ШхВхГ		2540x1	615x765			
Масса/заправка хладагента	кг	Нетто	555/27	555/27	600/27	600/27		
Трубопровод хладагента		Диаметр для жидкости		22	2.2			
(R410A)	MM	Диаметр для газа		38	3.1			
	(блоков,	Минимум	365	392	425	450		
подключаемых к наружному	,	Максимум	949	949	1105	1170		
Максимальное количество п	одключаемых	внутренних блоков	43	46	50	53		
Рабочий диапазон	°C	Охлаждение		-5^	-48			
температур наружного воздуха	-ر	Нагрев		~24				
Рабочий диапазон Охлаждение			17~32					
температур воздуха в помещении	°C	Нагрев		15-	~30			

DX PRO

CUCTEMЫ DX PRO MINI И DX PRO COMPACT

БЛОКИ DX PRO MINI

Инверторные технологии, применяемые в системе DX PRO mini, обеспечивают плавное изменение производительности в широком диапазоне, что повышает эффективность работы системы кондиционирования, создавая комфортные условия для пользователя. Система DX PRO mini предназначена преимущественно для коттеджей, элитных апартаментов, престижных офисов, салонов различного назначения, где требуется сочетание широких технических возможностей и максимального комфорта. Она обладает всеми достоинствами центральной интеллектуальной системы кондиционирования DX PRO.

■ В системе DX PRO mini применяется номенклатура внутренних блоков с номиналом до 7.1 кВт.

БЛОКИ DX PRO COMPACT

Серия наружных блоков предназначена для небольших коммерческих объектов с тепловой нагрузкой до 45 кВт. Преимуществом систем являются компактные размеры при большой производительности по сравнению с наружными блоками традиционных VRF-систем.

В линейке два модельных ряда блоков. Блоки нового модельного ряда KTRZ-HZAN3-C (два типоразмера производительностью 40.0 и 45.0 кВт) позволяют подключать до 15 внутренних блоков, а суммарная длина трубопровода хладагента составляет 250 м.

Технические решения, примененные в системе центрального кондиционирования DX PRO mini и Compact:

- Высокоэффективный инверторный компрессор.
- Номенклатура внутренних блоков аналогична применяемым в системе DX PRO.
- Возможность интеграции в систему управления зданием.

KTRY120/140/160/180HZAN3 KTRZ120/140/160HZAN3

KTRY200/220/260HZAN3 KTRZ400/450HZAN3-C

ini	Compa

	Суммарная длина трассы трубопровода (макс.)	100 м	250 м
Допустимая длина трубопровода	От наружного блока до внутреннего (эквивалентная)	60 м (70 м)	100 м (120 м)
	От первого разветвителя до внутреннего блока	20 м	40 M
Допустимый	Между наружным и внутренним блоками, наружный блок выше (ниже)	30 м (20 м)	30 м (20 м)
перепад высот	Между внутренними блоками	8 M	8 M

модель		·	KTRY120HZAN3	KTRY140HZAN3	KTRY160HZAN3	KTRY180HZAN3	KTRZ120HZAN3	KTRZ140HZAN3	KTRZ160HZAN3	
	кВт	Охлаждение	12.0	14.0	15.5	17.5	12.5	14.0	16.0	
Производительность	КВТ	Нагрев	13.2	15.4	17.0	19	14.0	16.0	17.5	
Энергоэффективность	-	EER/COP	3.69/3.80	3.54/3.7	3.43/3.56	3.3/3.8	3.78/3.80	3.54/3.70	3.43/3.56	
Электропитание	В, Гц, ф	-	380~415, 50, 3				•			
Потребляемая мощность	кВт	Охл./Нагр.	3.26/3.48	3.98/4.2	4.52/4.77	5.3/5.0	3.31/3.68	3.95/4.32	4.66/4.92	
Уровень шума	дБА	-	57	57	57	59	57	57	57	
Габариты	MM	ШхВхГ	900x1327x320					900x1327x400		
Масса/заправка хладагента	КГ	-	95/3.3	95/3.9	102/3.9	107/4.5	95/2.8	99/3.2	100/3.8	
Трубопровод		Диаметр для жидкости	9.52	9.52	9.52	9.52	9.52	9.52	9.52	
хладагента (R410A)	MM	Диаметр для газа	15.9	15.9	19.1	19.1	15.9	15.9	15.9	
Сумма индексов внутренни	х блоков, подн	ключаемых к наружному	54~156	63~182	72~208	81~234	54~156	63~182	72~208	
Максимальное количество	подключаемы	х внутренних блоков	6	6	7	9	7	8	9	
Рабочий диапазон	°C	Охлаждение		-15	~48		-15~46			
температур наружного воздуха	"	Нагрев		-15~27				-15~27		
Рабочий диапазон	0.0	Охлаждение		17-	~32		17~32			
температур воздуха в помещении	°C	Нагрев		10-	~28		до 28			

модель			KTRY200HZAN3	KTRY220HZAN3	KTRY260HZAN3	KTRZ400HZAN3-C	KTRZ450HZAN3-C	
Условная производительность	HP	-	7	8	9	14	16	
Произродитовиности	кВт	Охлаждение	20	22.4	26	40	45	
Производительность		Нагрев	22	24.5	28.5	45	50	
Энергоэффективность	-	EER/COP	3.28/3.61	3.29/4.15	3.42/4.19	3.35/4.05	3.32/3.93	
Расход воздуха	м³/ч	-	10999	10500	10500	16575	16575	
Электропитание	В, Гц, ф	-						
Потребляемая мощность	кВт	Охл./Нагр.	6.1/6.1	6.8/5.9	7.6/6.8	11.9/11.1	13.6/12.7	
Уровень шума	дБА	-	59	59	60	62	62	
Габариты	MM	ШхВхГ	1120x1558x400	1120x1558x400	1120x1558x400	1360x1650x540	1460x1650x540	
Масса/заправка хладагента	КГ	-	137	146.5	147	240/9	275/12	
Трубопровод хладагента		Диаметр для жидкости	9.52	9.52	9.52	12.7	12.7	
(R410A)	MM	Диаметр для газа	19.1	19.1	22.2	22.2	25.4	
Сумма индексов внутренни:	х блоков, поді	ключаемых к наружному	100~260	112~291	130~338	200~520	225~585	
Максимальное количество і	подключаемы	х внутренних блоков	10	11	12	14	15	
Рабочий диапазон	0.0	Охлаждение		-15~48		-15	~48	
температур наружного воздуха	°C	Нагрев		-15~27	-15	~24		
Рабочий диапазон		Охлаждение		21~32		17~32		
температур воздуха в помещении	°C	Нагрев	до 28			15~30		

R410A DX PRO

🗱 СИСТЕМЫ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА DX PRO W

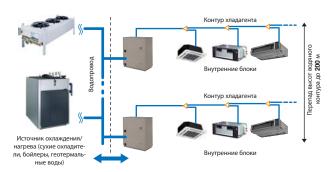
KTWY250/290/340HZAN3-B

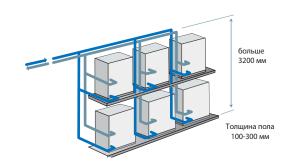
Какой бы ни была температура снаружи, водяной контур позволяет использовать систему центрального кондиционирования DX PRO III W в режиме охлаждения или нагрева круглый год. Наружные блоки DX PRO III W можно монтировать в закрытых помещениях. В качестве охлаждающей/нагревающей жидкости (диапазон температур от 7 до 45 °C) могут использоваться в том числе грунтовые воды.

■ Общая протяженность трубопроводов может достигать 300 м, фактическая длина — 120 м, перепад уровней между внутренним и наружным блоками — 50 м.

		До	пустимое значение
	Общая длина трубопровода (фактич.)	≤30 HP	300 м
Длина трубопро- вода		Фактическая длина	120 м
	Макс. длина трубопровода	Эквивалентная длина	150 м
	Эквивалентная длина трубопроводлина от первого разветвителя)	40 M	
	Перепад высот между наруж-	Наружный блок выше	50 м
Перепад высот	ным и внутренним блоками	Наружный блок ниже	40 M
	Перепад высот между внутренни	30 м	

Стабильные оптимальные для работы температурные условия способствуют повышению сезонной энергоэффективности DX PRO: значение IPLV достигает 5,9. В системе нет вентиляторов теплообменников, поэтому она работает очень тихо.





■ Современный теплообменник типа «труба в трубе» обеспечивает эффективную теплопередачу от фреонового контура стороне воды и отличается повышенной надежностью.

■ Сухие охладители можно разместить на значительном удалении от наружных блоков, что позволяет применять системы в высотных зданиях. Возможно создать комплекс с общим водопроводом и рекуперацией энергии, при котором тепло, отданное блоками

жидкости, работающими на охлаждение одной зоны объекта, может использоваться в теплообменниках блоков системы, обогревающей другие помещения.

🕏 БАЗОВЫЕ МОДУЛИ НАРУЖНЫХ БЛОКОВ

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTWY250HZAN3-B	KTWY290HZAN3-B	KTWY340HZAN3-B				
Условная производительность	НР		8	10	12				
Произродитов ност	кВт	Охлаждение	25.2	28.0	33.5				
Производительность	KBT	Нагрев 27.0 31.5		31.5	37.5				
Энергоэффективность	-	EER/COP	5.25/6.06	4.590/5.40	4.19/4.81				
Расход воды	м³/ч	-	5.4	6.0	7.2				
Электропитание	В, Гц, ф	Трехфазное	380, 50, 3						
D6		Охлаждение	4.80	6.10	8.0				
Потребляемая мощность	кВт	Нагрев	4.45	5.83	7.8				
Уровень шума	дБА	-	51	52	52				
Габариты	ММ	ШхВхГ	780x1000x550	780x1000x550	780x1000x550				
Масса/заправка хладагента	КГ	Нетто	146/2	146/2	146/2				
Трубопровод хладагента		Диаметр для жидкости	12.7	12.7	15.9				
(R410A)	MM	Диаметр для газа	25.4	25.4	31.8				
Сумма индексов внутренних	с блоков,	Минимум	125	145	170				
подключаемых к наружному	'	Максимум	325	377	442				
Максимальное количество г	одключаемых	внутренних блоков	13	16	19				
Диапазон температур воды на входе	°C	-		7~45					
Рабочий диапазон темпе- ратур наружного воздуха	°C	-		0~40					
Рабочий диапазон тем-		Охлаждение		17~32					
ператур воздуха в поме- щении	°C	Нагрев	15~30						
Допустимая влажность наружного воздуха	%	-		до 80					

ДВУХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTWY-HZAN3-B	500	540	580	630	680
Условная производительность	HP		16	18	20	22	24
	8HP	KTWY250HZAN3	1+1	1			
Комбинация модулей	10HP	KTWY290HZAN3		1	1+1	1	
	12HP	KTWY340HZAN3				1	1+1
Номинальная производительность	кВт	Охлаждение	50.4	53.2	56.0	61.5	67.0
		Нагрев	54.0	58.5	63.0	69.0	75.0
Энергоэффективность	-	EER/COP	5.25/6.07	4.88/5.69	4.59/5.40	4.36/5.06	4.19/4.81
Электропитание	В, Гц, ф	Трехфазное			380, 50, 3		
D6	D-	Охлаждение	9.60	10.90	12.20	14.10	16.0
Потребляемая мощность	кВт	Нагрев	8.90	10.28	11.66	13.63	15.6
Сумма индексов внутренни:	х блоков,	Минимум	250	270	290	315	340
подключаемых к наружному		Максимум	650	702	754	819	884
Максимальное количество подключаемых внутренних блоков		23	29	33	36	39	

ТРЕХМОДУЛЬНАЯ КОМПОНОВКА

модель		KTWY-HZAN3-B	790	830	870	920	970	1020
Условная производительность	НР		26	28	30	32	34	36
	8HP	KTWY250HZAN3	1+1	1				
Комбинация модулей	10HP	KTWY290HZAN3	1	1+1	1+1+1	1+1	1	
	12HP	KTWY340HZAN3				1	1+1	1+1+1
Номинальная	кВт	Охлаждение	78.4	81.2	84.0	89.5	95.0	100.5
производительность		Нагрев	85.5	90.0	94.5	100.5	106.5	112.5
Энергоэффективность	-	EER/COP	4.99/5.80	4.78/5.59	4.59/5.40	4.43/5.16	4.30/4.97	4.19/4.81
Электропитание	В, Гц, ф	Трехфазное			380,	50, 3		
Потребляемая мощность	кВт	Охлаждение	15.7	17.0	18.3	20.2	22.1	24.0
потреоляемая мощноств	KDI	Нагрев	14.7	16.1	17.5	19.5	21.43	23.4
Сумма индексов внутренни:	х блоков,	Минимум	395	415	435	460	485	510
подключаемых к наружному		Максимум	1027	1079	1131	1196	1261	1326
Максимальное количество подключаемых внутренних блоков			43	46	50	53	56	59

R410A

🗱 ВНУТРЕННИЕ БЛОКИ НАСТЕННОГО ТИПА

KTGZ

Элегантные и технологичные.

- Информационный дисплей (скрытого типа) на внутреннем блоке отображает основные активизированные режимы, заданную температуру и значение времени по таймеру.
- Электронный регулирующий клапан встроен внутрь корпуса.
- Бесшумная работа кондиционера благодаря применению тангенциального вентилятора оптимизированной формы.
- Секционный теплообменник с увеличенной площадью поверхности.
- Система фильтрации очистит воздух от пыли, пуха, частиц загрязнений и бытовых запахов.
- Широкий диапазон изменения воздухораспределения за счет выбора одного из фиксированных положений заслонки или ее непрерывного качания.
- Система воздухораспределения поддерживает функцию предотвращения сквозняков.
- Улучшенный теплообмен благодаря трапецеидальной форме канавок на внутренней поверхности труб теплообменника, а также его гидрофильному покрытию.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTGZ24HFAN1 KTGZ30HFAN1 KTGZ40HFAN1 KTGZ50HFAN1 KTGZ60HFAN1 KTGZ72HFAN1 KTGZ80HFAN1

модель			KTGZ24HFAN1	KTGZ30HFAN1	KTGZ40HFAN1	KTGZ50HFAN1	KTGZ60HFAN1	KTGZ72HFAN1	KTGZ80HFAN1
Произродитов пост	кВт	Охлаждение	2.2	2.8	3.6	4.5	5.6	7.1	8.0
Производительность	KDI	Нагрев	2.4	3.2	4.0	5.0	6.3	8.0	9.0
Электропитание	В, Гц, Ф	Однофазное				220~240, 50, 1			
Расход воздуха	м³/ч	Высокий/средний/низкий	422/393/356	417/370/316	656/573/488	594/507/424	747/648/547	1195/1005/809	1195/1005/809
Ток	Α	Рабочий	0.27	0.31	0.43	0.44	0.58	0.6	0.6
D6	Вт	Охлаждение	8	9	19	19	27	49	53
Потребляемая мощность	ВТ	Нагрев	8	9	19	19	27	49	53
Уровень шума	дБА	Высокий/низкий	31/30/29	31/30/29	33/32/30	35/33/31	38/36/34	44/39/36	44/39/36
Габариты (ШхВхГ)	мм	Внутренний блок	835x280x203	835x280x203	990x315x223	990x315x223	990x315x223	1194x343x262	1194x343x262
Macca	КГ	Внутренний блок	8.4	9.5	11.4	12.8	12.8	17	17
T6		Диаметр для жидкости	6.4	6.4	6.4	6.4	9.5	9.5	9.5
Трубопровод хладагента мм		Диаметр для газа	12.7	12.7	12.7	12.7	15.9	15.9	15.9

· DINÆDEI

🗱 ВНУТРЕННИЕ БЛОКИ НАСТЕННОГО ТИПА

KTGY

Компактные и стильные блоки.

- большой информационный дисплей на внутреннем блоке;
- электронный регулирующий клапан встроен внутрь корпуса;
- высокоэффективный фильтр и система очистки сохраняют воздух свежим и чистым;
- бесшумная работа кондиционера благодаря применению тангенциального вентилятора оптимизированной формы;
- секционный теплообменник с увеличенной поверхностью;
- улучшенный теплообмен благодаря трапецеидальной форме канавок на внутренней поверхности труб теплообменника, а также его гидрофильному алюминиевому покрытию;
- равномерная циркуляция воздуха в помещении;
- широкий диапазон изменения воздухораспределения за счет выбора одного из фиксированных положений заслонки или ее непрерывного качания.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTGY72HFAN1

модель			KTGY72HFAN1
	кВт	Охлаждение	7.1
Производительность	КВТ	Нагрев	8.0
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1
Расход воздуха	м³/ч	Высокий/средний/ низкий	900/760/650
Ток	Α	Рабочий	0.28
D6	Вт	Охлаждение	60
Потребляемая мощность	ВТ	Нагрев	60
Уровень шума	дБА	Высокий/средний/ низкий	40/38/34
Габариты (ШхВхГ)	ММ	Внутренний блок	1070x315x210
Macca	КГ	Внутренний блок	16
T6		Диаметр для жидкости	9.5
Трубопровод хладагента	MM	Диаметр для газа	15.9

R410A

В ВНУТРЕННИЕ БЛОКИ КАССЕТНОГО ТИПА

ОДНОПОТОЧНЫЕ

KTYY

У этих блоков сразу несколько преимуществ:

- блок спроектирован для помещений с небольшим пространством за подвесным потолком. Высота блока — от 153 мм.
- новая декоративная панель KPZ105 с цифровым дисплеем, на котором отображаются основные режимы работы кондиционера и коды ошибок;
- низкий уровень шума;
- встроенный дренажный насос принудительно отводит конденсат с подъемом до 750 мм;
- конструкция блока позволяет максимально эффективно использовать его при установке в угловом потолочном коробе.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTYY24HFAN1 KTYY30HFAN1 KTYY40HFAN1 KTYY50HFAN1 KTYY60HFAN1 KTYY72HFAN1

модель			KTYY24HFAN1	KTYY30HFAN1	KTYY40HFAN1	KTYY50HFAN1	KTYY60HFAN1	KTYY72HFAN1
ДЕКОРАТИВНАЯ ПАНЕЛЬ			KPZ105	KPZ105	KPZ105	KPY142	KPY142	KPY142
		Охлаждение	2.2	2.8	3.6	4.5	5.6	7.1
ооизводительность кВт		Нагрев	2.6	3.2	4.0	5.0	6.3	8
Электропитание	В, Гц, Ф	Однофазное			220~24	0, 50, 1		
Расход воздуха	м³/ч	Высокий/средний/низкий	523/404/275	523/404/275	523/404/275	704/630/503	860/810/702	933/749/592
Ток	А	Рабочий	0.24	0.25	0.25	0.27	0.32	0.36
		Охлаждение	41	41	41	48	48	60
Потребляемая мощность	Вт	Нагрев	41	41	41	43	44	55
Уровень шума	дБА	Высокий/средний/низкий	38/34/30	39/37/34	40/38/34	41/39/35	42/40/36	44/41/37
5.6 (III.D.D.		Внутренний блок	1054x153x425	1054x153x425	1054x153x425	1204x189x443	1204x189x443	1204x189x443
Габариты (ШхВхГ)	MM	Декоративная панель	1180x25x465	1180x25x465	1180x25x465	1350x25x505	1350x25x505	1350x25x505
		Внутренний блок	12.5	13	13	18.5	18.5	18.5
Масса кг		Декоративная панель	3.5	3.5	3.5	4	4	4
		Диаметр для жидкости	6.4	6.4	6.4	6.4	12.7	12.7
Трубопровод хладагента	ММ	Диаметр для газа	12.7	12.7	12.7	12.7	15.9	15.9

💠 ВНУТРЕННИЕ БЛОКИ КАССЕТНОГО ТИПА

ЧЕТЫРЕХПОТОЧНЫЕ 600Х600

KTZY

Четырехпоточные внутренние блоки кассетного типа одинаково хорошо подходят и для офисов, и для жилых помещений, обеспечивая оптимальную циркуляцию воздушного потока:

- низкий уровень шума внутреннего блока за счет использования усовершенствованного объемного вентилятора и обтекаемых форм корпуса;
- блок спроектирован для использования в помещениях с низким потолочным пространством (высота блока — 260 мм);
- упрощенный монтаж и обслуживание благодаря малому весу блока
- равномерная и достаточно широкая область охлаждения благодаря использованию панели кругового потока KPU65-B1;
- электронно-расширительный клапан встроен внутрь корпуса блока, что также облегчает установку, обслуживание и диагностику (в последнем случае достаточно открыть решетку заборного воздуха);
- насос дренажной системы принудительно отводит конденсат с подъемом до 500 мм.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTZY24HFAN1 KTZY30HFAN1 KTZY40HFAN1 KTZY50HFAN1 KTZY60HFAN1

МОДЕЛЬ			KTZY24HFAN1	KTZY30HFAN1	KTZY40HFAN1	KTZY50HFAN1	KTZY60HFAN1
ДЕКОРАТИВНАЯ ПАНЕЛЬ			KPU65-B1	KPU65-B1	KPU65-B1	KPU65-B1	KPU65-B1
Произродитов наст	кВт	Охлаждение	2.2	2.8	3.6	4.5	5.6
Производительность	KDI	Нагрев	2.4	3.2	4.0	5.0	6.3
Электропитание	В, Гц, Ф	Однофазное			220~240, 50, 1		
Расход воздуха	м³/ч	Высокий/средний/низкий	522/414/313	522/414/313	610/492/317	610/492/317	610/492/317
Ток	А	Рабочий	0.18	0.18	0.21	0.21	0.21
		Охлаждение	51	52	56	56	56
Потребляемая мощность	Вт	Нагрев	43	44	56	56	56
Уровень шума	дБА	Высокий/средний/низкий	34/33/23	34/33/23	42/36/29	42/36/29	42/36/29
F.C. (III.D.D.		Внутренний блок			630x260x575		
Габариты (ШхВхГ)	MM	Декоративная панель			647x50x647		
		Внутренний блок	17.5	17.5	19	19	19
Macca	КГ	Декоративная панель			2.5		
T. 6		Диаметр для жидкости	6.4	6.4	6.4	6.4	9.5
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7	12.7	12.7	15.9

R410A

🗱 ВНУТРЕННИЕ БЛОКИ КАССЕТНОГО ТИПА

ЧЕТЫРЕХПОТОЧНЫЕ

KTVY

Четырехпоточные внутренние блоки кассетного типа одинаково хорошо подходят и для офисов, и для жилых помещений, обеспечивая оптимальную циркуляцию воздушного потока:

- низкий уровень шума;
- насос дренажной системы принудительно отводит конденсат с подъемом до 750 мм;
- возможность подмеса свежего воздуха;
- равномерная и достаточно широкая область охлаждения;
- уменьшенный размер для монтажа в подвесной потолок от 230 мм;
- упрощенный монтаж и обслуживание благодаря малому весу блока и панели;
- декоративная панель KPU95-D обеспечивает подачу воздуха в четырех направлениях и дополнительную угловую подачу, что дает быстрые и эффективные охлаждение и нагрев, высокий уровень комфорта пользователя.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTVY30HFAN1 KTVY40HFAN1 KTVY50HFAN1 KTVY60HFAN1 KTVY72HFAN1 KTVY90HFAN1 KTVY115HFAN1 KTVY140HFAN1

МОДЕЛЬ			KTVY30HFAN1	KTVY40HFAN1	KTVY50HFAN1	KTVY60HFAN1	KTVY72HFAN1	KTVY90HFAN1	KTVY115HFAN1	KTVY140HFAN1	
ДЕКОРАТИВНАЯ ПАНЕЛЬ			KPU95-D	KPU95-D	KPU95-D	KPU95-D	KPU95-D	KPU95-D	KPU95-D	KPU95-D	
Производительность	кВт	Охлаждение	2.8	3.6	4.5	5.6	7.1	9.0	11.2	14.0	
Производительность	KDI	Нагрев	3.2	4.0	5.0	6.3	8.0	10.0	12.5	15.0	
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1								
Расход воздуха	м³/ч	Высокий/средний/низкий	847/766/640	847/766/640	864/755/658	864/755/658	1157/955/749	1540/1300/1120	1540/1300/1120	1540/1300/1120	
Ток	Α	Рабочий	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.8	
Потпобласныя нашися	Вт	Охлаждение	80	80	75	75	82	160	160	170	
Потребляемая мощность	ы	Нагрев	65	65	75	75	82	160	160	170	
Уровень шума	дБА	Высокий/средний/низкий	42/38/35	42/38/35	42/38/35	42/38/35	45/42/39	48/45/43	48/45/43	50/47/44	
Γ-6 (ШDΓ)		Внутренний блок	840x230x840	840x230x840	840x230x840	840x230x840	840x230x840	840x300x840	840x300x840	840x300x840	
Габариты (ШхВхГ)	MM	Декоративная панель				950x4	6x950				
M		Внутренний блок	24	24	26	26	26	32	32	32	
Масса кг		Декоративная панель					6			_	
T6		Диаметр для жидкости	6.4	6.4	6.4	9.5	9.5	9.5	9.5	9.5	
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7	12.7	15.9	15.9	15.9	15.9	15.9	

🗱 ВНУТРЕННИЕ БЛОКИ КАНАЛЬНОГО ТИПА

НИЗКОНАПОРНЫЕ

KTLZ, KTLZA

Внутренние блоки этого типа широко используются в жилых и коммерческих помещениях и обладают рядом достоинств:

- легкий и компактный блок высотой всего 210 мм размещается за подвесным или подшивным потолком комнаты или прихожей и незаметен в интерьере;
- низкий уровень шума от 24 дБА для моделей с DC-инверторным приводом вентилятора;
- внешнее статическое давление до 30 Па;
- встроенный электронно-расширительный вентиль;
- возможность предварительной установки уровня внешнего статического давления, учитывающего потери в воздуховодах;
- простое обслуживание и эксплуатация;
- воздушный фильтр в стандартной комплектации;
- встроенный дренажный насос с высотой подъема конденсата до
- KTLZA имеет встроенный DC-инверторный привод вентилятора.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTLZ24HFAN1 KTLZ30HFAN1 KTLZ40HFAN1

KTLZA18HFAN1 KTLZA24HFAN1 KTLZA30HFAN1 KTLZA40HFAN1

модель			KTLZA18HFAN1	KTLZA24HFAN1	KTLZA30HFAN1	KTLZA40HFAN1	KTLZ24HFAN1	KTLZ30HFAN1	KTLZ40HFAN1
		Охлаждение	1.8	2.2	2.8	3.6	2.2	2.8	3.6
Производительность	кВт	Нагрев	2.2	2.6	3.2	4.0	2.6	3.2	4.0
Электропитание	В, Гц, Ф	Однофазное		220~24	10, 50, 1			220~240, 50, 1	
Расход воздуха	м³/ч	Высокий/средний/низкий	590/520/415	590/520/415	590/520/415	655/560/465	662/425/361	674/430/370	715/491/427
Ток	А	Рабочий	0.50	0.50	0.5	0.5	0.31	0.31	0.33
		Охлаждение	23	23	23	30	57	57	61
Потребляемая мощность	Вт	Нагрев	23	23	23	30	57	57	61
Уровень шума	дБА	Высокий/средний/низкий	34/26/24	34/26/24	34/26/24	37/31/28	36/35/32	37/35/32	38/37/33
Внешнее статическое давление	Па	-		3	0			30	
Габариты (ШхВхГ)	мм	Внутренний блок	740x210x470	740x210x470	740x210x470	740x210x470	700x210x500	700x210x500	700x210x500
Macca	кг	Внутренний блок	14	14	14	14	17.5	17.5	17.5
T6		Диаметр для жидкости		6	.4			6.4	
Трубопровод хладагента	MM	Диаметр для газа		12	2.7			12.7	

DX PRO **R410A**

🗱 ВНУТРЕННИЕ БЛОКИ КАНАЛЬНОГО ТИПА

СРЕДНЕНАПОРНЫЕ

KTKX

Внутренние блоки этого типа широко используются для жилых и коммерческих помещений.

- Блок монтируется за подшивным или подвесным потолком.
- Легкая и компактная конструкция внутреннего блока.
- Встроенный в корпус электронно-расширительный клапан.
- Легкий доступ ко внутренним компонентам блока упрощающает установку и обслуживание.
- Возможность регулирования скорости вентилятора делает распределение воздуха более комфортным.
- Различные варианты установки воздушного фильтра.
- Воздушный фильтр в стандартной комплектации.
- Встроенный дренажный насос с высотой подъема конденсата до 750 мм.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTKX40HFAN1 KTKX50HFAN1 KTKX60HFAN1 KTKX72HFAN1 KTKX90HFAN1 KTKX115HFAN1 KTKX140HFAN1

- ' '									
модель			KTKX40HFAN1	KTKX50HFAN1	KTKX60HFAN1	KTKX72HFAN1	KTKX90HFAN1	KTKX115HFAN1	KTKX140HFAN1
	D	Охлаждение	3.6	4.5	5.6	7.1	9.0	11.2	14.0
Производительность	кВт	Нагрев	4.0	5.0	6.3	8.0	10.0	12.5	15.5
Электропитание	В, Гц, Ф	Однофазное			,	220~240, 50, 1	•		•
Расход воздуха	м³/ч	Высокий/средний/низкий	570/530/410	958/850/667	958/850/667	1207/1050/905	1558/1350/1167	2036/1800/1564	2138/1900/1643
Ток	А	Рабочий	0.28	0.5	0.5	0.7	1.0	1.8	1.8
D6	D-	Охлаждение	61	92	92	149	200	313	274
Потребляемая мощность	Вт	Нагрев	61	92	92	149	200	313	274
Уровень шума	дБА	Высокий/средний/низкий	40/38/36	41/36/32	41/36/32	42/33/29	45/40/37	48/42/38	48/43/39
Внешнее статическое давление	Па	-	30	30	30	30	50	80	100
Габариты (ШхВхГ)	мм	Внутренний блок	700x210x570	920x210x570	920x210x570	920x210x570	1140x270x710	1140x270x710	1200x300x800
Macca	кг	Внутренний блок	22	27	27	30	42	42	50
T6		Диаметр для жидкости	6.4	6.4	9.5	9.5	9.5	9.5	9.5
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7	15.9	15.9	15.9	15.9	15.9

🗱 ВНУТРЕННИЕ БЛОКИ КАНАЛЬНОГО ТИПА

СРЕДНЕНАПОРНЫЕ

KTKZA

Внутренние блоки этого типа широко используются в жилых и коммерческих помещениях и обладают рядом достоинств:

- легкий и компактный блок высотой всего 210 мм размещается за подвесным или подшивным потолком комнаты или прихожей и незаметен в интерьере;
- низкий уровень шума от 36 дБА;
- внешнее статическое давление от 80 до 150 Па;
- встроенный электронно-расширительный вентиль;
- возможность предварительной установки уровня внешнего статического давления, учитывающего потери в воздуховодах;
- простое обслуживание и эксплуатация;
- воздушный фильтр в стандартной комплектации;
- встроенный дренажный насос с высотой подъема конденсата до 750 мм.
- КТКZА имеет встроенный DC-инверторный привод вентилятора.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTKZA24HFAN1 KTKZA30HFAN1 KTKZA40HFAN1 KTKZA50HFAN1 KTKZA60HFAN1 KTKZA72HFAN1 KTKZA90HFAN1 KTKZA115HFAN1 KTKZA140HFAN1

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTKZA24HFAN1	KTKZA30HFAN1	KTKZA40HFAN1	KTKZA50HFAN1		
	кВт	Охлаждение	2.2	2.8	3.6	4.5		
Производительность	KBT	Нагрев	2.6	3.2	4.0	5		
Электропитание	В, Гц, Ф	Однофазное	220~240		10, 50, 1			
Расход воздуха	м³/ч	Высокий/средний/низкий	580/500/420 580/500/420 580/500/420 755/6					
Ток	Α	Рабочий	1.0	1.0	1.0	2.5		
П (_	Охлаждение	120	120	150	260		
Потребляемая мощность	кВт	Нагрев	120	120	150	260		
Уровень шума	дБА	Высокий/средний/низкий	38/37/36	39/37/36	38/37/36	46/43/41		
Внешнее статическое давление	Па	-	80	80	80	150		
Габариты (ШхВхГ)	ММ	Внутренний блок	920x210x450	920x210x450	920x210x450	920x270x570		
Macca	КГ	Внутренний блок	21.5	21.5	22	29		
T (Диаметр для жидкости		6	.4	•		
Трубопровод хладагента	MM	Диаметр для газа	12.7					

модель			KTKZA60HFAN1	KTKZA72HFAN1	KTKZA90HFAN1	KTKZA115HFAN1	KTKZA140HFAN1
	кВт	Охлаждение	5.6	7.1	9	11.2	14
Производительность	KDI	Нагрев	6.3	8	10	12.5	15.5
Электропитание	В, Гц, Ф	Однофазное			220~240, 50, 1		
Расход воздуха	м³/ч	Высокий/средний/низкий	870/755/638	1160/1005/850	1450/1256/1063	1740/1508/1275	2320/2010/1700
Ток	Α	Рабочий	2.5	2.5	2.5	3	3
D6		Охлаждение	280	290	350	340	500
Потребляемая мощность	кВт	Нагрев	280	290	350	340	500
Уровень шума	дБА	Высокий/средний/низкий	47/43/41	49/46/44	57/54/52	49/46/44	55/53/51
Внешнее статическое давление	Па	-			150		
Габариты (ШхВхГ)	мм	Внутренний блок	920x270x570	1148x270x710	1148x270x710	1200x300x865	1200x300x865
Macca	КГ	Внутренний блок	29	36	37	46	46
T 6		Диаметр для жидкости			9.5		
Трубопровод хладагента мм		Диаметр для газа			15.9		

R410A

🗱 ВНУТРЕННИЕ БЛОКИ КАНАЛЬНОГО ТИПА

ВЫСОКОНАПОРНЫЕ

KTTX

- Допустимы увеличенная протяженность и сложная конфигурация воздуховодов за счет высокого статического напора (до 280 Па) — идеальный вариант для кондиционирования вытянутых помещений большой площади.
- Блок монтируется за подшивным или подвесным потолком, видна только воздуховыпускная решетка.
- Небольшое монтажное пространство за счет высоты блока: всего 400 мм.
- Воздушный фильтр в комплекте.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTTX72HFAN1 KTTX90HFAN1 KTTX115HFAN1 KTTX140HFAN1 KTTX160HFAN1 KTTX200HFAN1 KTTX250HFAN1 KTTX280HFAN1 KTTX400HFAN1 KTTX450HFAN1 KTTX560HFAN1

ОХЛАЖДЕНИЕ/НАГРЕВ

модель			KTTX72HFAN1	KTTX90HFAN1	KTTX115HFAN1	KTTX140HFAN1	KTTX160HFAN1
Произродитов ност	кВт	Охлаждение	7.1	9.0	11.2	14.0	16.0
Производительность	KDI	Нагрев	8.0	10.0	12.5	16.0	17.0
Электропитание	В, Гц, Ф	Однофазное			220~240, 50, 1		
Расход воздуха	м³/ч	Высокий/средний/низкий	1443/1361/1218	1951/1741/1518	2116/1936/1520	3000/2618/2226	3620/3044/2744
Ток	Α	Рабочий	1.23	1.87	2.3	2.85	4.77
D6	кВт	Охлаждение	0.26	0.42	0.52	0.72	0.94
Потребляемая мощность	KBT	Нагрев	0.26	0.42	0.52	0.72	0.94
Уровень шума	дБА	Высокий/средний/низкий	48/46/44	52/49/47	52/49/47	53/50/48	54/52/50
Внешнее статическое давление	Па	-			196		
Габариты (ШхВхГ)	ММ	Внутренний блок	952x420x690	952x420x690	952x420x690	1300x420x691	1300x420x691
Macca	КГ	Внутренний блок	45	46.5	50.6	68	70
T6		Диаметр для жидкости			9.5		
Трубопровод хладагента	ММ	Диаметр для газа			15.9		

модель			KTTX200HFAN1	KTTX250HFAN1	KTTX280HFAN1	KTTX400HFAN1	KTTX450HFAN1	KTTX560HFAN1
D	кВт	Охлаждение	20.0	25.0	28.0	40.0	45.0	56.0
Производительность	KBT	Нагрев	22.5	26.0	31.5	45.0	50.0	63.0
Электропитание	В, Гц, Ф	Однофазное			220~24	10, 50, 1		
Расход воздуха	м³/ч	Высокий/средний/низкий	4700/4100/3599	4280/3820/3200	4400/3708/3200	7468/6047/4989	7468/6047/4989	9506/7897/6550
Ток	Α	Рабочий	8.6	8.6	8.6	12.5	12.5	15.50
Пб		Охлаждение	1.52	1.52	1.52	2.70	2.70	3.40
Потребляемая мощность	кВт	Нагрев	1.52	1.52	1.52	2.70	2.70	3.40
Уровень шума	дБА	Высокий/средний/низкий	59/55/52	59/55/52	59/55/52	61/59/56	61/59/56	63/60/57
Внешнее статическое давление	Па	-		280			280	
Габариты (ШхВхГ)	мм	Внутренний блок	1443x470x810	1443x470x810	1443x470x810	1970x668x902	1970x668x902	1970x668x902
Macca	КГ	Внутренний блок	115	115	115	232	232	235
T6		Диаметр для жидкости	9.5x2	9.5x2	9.5x2	9.5x2	9.5x2	9.5x2
Трубопровод хладагента	MM	Диаметр для газа	15.9x2	16.0x2	16.0x2	22.2x2	22.2x2	22.2x2

🗱 ВНУТРЕННИЕ БЛОКИ КАНАЛЬНОГО ТИПА

ВЫСОКОНАПОРНЫЕ

KTTY

- Канальные блоки с функцией подачи свежего воздуха.
- Высокий статический напор (до 280 Па) делает возможным применение системы воздуховодов сложной конфигурации и большой протяженности, а также позволяет использовать систему в помещениях с высокими потолками.
- Блок монтируется за подшивным или подвесным потолком.
- Воздушный фильтр в комплекте.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-51 в комплекте

МОДЕЛЬНЫЙ РЯД

KTTY125HFAN1 KTTY140HFAN1 KTTY200HFAN1 KTTY250HFAN1 KTTY280HFAN1

модель			KTTY125HFAN1	KTTY140HFAN1	KTTY200HFAN1	KTTY250HFAN1	KTTY280HFAN1
	кВт	Охлаждение	12.5	14.0	20	25.0	28.0
Производительность	KBT	Нагрев	10.5	12.0	18.0	20.0	22.0
Электропитание	В, Гц, Ф	Однофазное			220~240, 50, 1		
Расход воздуха	м³/ч	Высокий/средний/ низкий	2142/1870/1611	2142/1870/1611	2870/2620/2150	3005/2700/2250	3005/2700/2250
Ток	Α	Рабочий	2.4	2.4	5.3	5.6	5.6
	_	Охлаждение	0.46	0.46	1.06	1.06	1.06
Потребляемая мощность	кВт	Нагрев	0.46	0.46	1.06	1.06	1.06
Уровень шума	дБА	Высокий/средний/низкий	54/52/50	54/52/50	54/53/51	55/54/52	55/54/52
Внешнее статическое давление	Па	-	196	196	280	280	280
Габариты (ШхВхГ)	мм	Внутренний блок	1300x420x690	1300x420x690	1443x470x810	1443x470x810	1443x470x810
Macca	КГ	Внутренний блок	69.5	69.5	115	115	115
T. 6		Диаметр для жидкости	9.5	9.5	9.5	9.5	9.5
Трубопровод хладагента	MM	Диаметр для газа	15.9	15.9	15.9	15.9	15.9

DX PRO **R410A**

🗱 ВНУТРЕННИЕ БЛОКИ УНИВЕРСАЛЬНОГО ТИПА

KTHX

Внутренний универсальный блок может быть установлен на потолке или на стене рядом с полом. Эффективное воздухораспределение гарантируется в любом из данных вариантов установки.

- Электронный регулирующий клапан встроен в корпус блока.
- Простота монтажа.
- Автоматическое качание заслонок по вертикали и горизонтали.
- Низкий уровень шума.
- Компактный дизайн.
- Дистанционный пульт управления.

ПУЛЬТ УПРАВЛЕНИЯ

КІС-75Н в комплекте

МОДЕЛЬНЫЙ РЯД

KTHX40HFAN1 KTHX50HFAN1 KTHX60HFAN1 KTHX72HFAN1 KTHX90HFAN1 KTHX115HFAN1 KTHX140HFAN1 KTHX160HFAN1

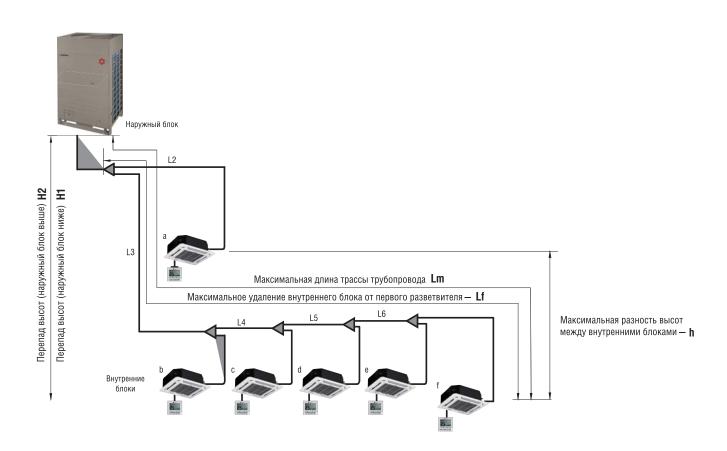
модель			KTHX40HFAN1	KTHX50HFAN1	KTHX60HFAN1	KTHX72HFAN1	KTHX90HFAN1	KTHX115HFAN1	KTHX140HFAN1	KTHX160HFAN1
Произродитов ност	кВт	Охлаждение	3.6	4.5	5.6	7.1	9.0	11.2	14.0	16.0
Производительность	KDI	Нагрев	4.0	5.0	6.3	8.0	10.0	12.5	15.5	18.0
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1							
Расход воздуха	м³/ч	Высокий/средний/низкий	650/570/500	800/600/500	800/600/500	800/600/500	1200/900/700	1980/1860/1730	1980/1860/1730	1980/1860/1730
Ток	Α	Рабочий	0.23	0.67	0.67	0.67	0.83	1.11	1.11	1.41
П	D-	Охлаждение	49	120	122	125	130	182	182	300
Потребляемая мощность	Вт	Нагрев	49	120	122	125	130	182	182	300
Уровень шума	дБА	Высокий/средний/низкий	40/38/36	43/41/38	43/41/38	43/41/38	45/43/40	47/45/42	47/45/42	47/45/42
Габариты (ШхВхГ)	мм	Внутренний блок	990x660x203	990x660x203	990x660x203	990x660x203	1280x660x203	1670x680x244	1670x680x244	1670x680x244
Macca	КГ	Внутренний блок	26	28	28	28	34.5	54	54	57.5
T6		Диаметр для жидкости	6.4	6.4	9.5	9.5	9.5	9.5	9.5	9.5
Трубопровод хладагента	MM	Диаметр для газа	12.7	12.7	15.9	15.9	15.9	15.9	15.9	15.9

DX PRO

♣ ПОСЛЕДОВАТЕЛЬНОСТЬ ПОДБОРА ЭЛЕМЕНТОВ ТРУБОПРОВОДА ХЛАДАГЕНТА ДЛЯ СИСТЕМ **DX PRO**

- 1. Подбор внутренних блоков. Для каждого кондиционируемого помещения в соответствии с расчетными теплопоступлениями по таблицам Технического каталога подбираются внутренние блоки и определяются их индексы (Таблица 1).
- **2.** Подбор наружного блока. Определяется сумма индексов внутренних блоков системы и по этой сумме выбирается наружный блок и определяется табличное значение его холодопроизводительности.

При подборе наружного блока необходимо выполнить два условия (Таблица 2A и 2Б):


- сумма индексов внутренних блоков должна находиться в пределах, указанных в Таблице;
- количество внутренних блоков должно быть не более указанного в Таблице 2A и 2Б.
- **3.** Трассировка трубопроводов выполняется с учетом фактического расположения наружного и внутренних блоков.

При трассировке трубопроводов следует учитывать ряд ограничений на длины участков и перепады высот (Таблица 3A и 3Б).

- **4.** Определение диаметров трубопровода производится по таблицам с учетом длины трубопроводов:
 - для наружного блока (Таблица 4А и 4Б);
 - для участков между разветвителями (Таблица 5А и 5Б);
 - для внутренних блоков (Таблица 6А и 6Б).
- 5. Подбор моделей разветвителей:
 - для ближайшего (первого) к наружному блоку разветвителя (Таблица 4А и 4Б);
 - для комплекта разветвителей, объединяющих несколько модулей в единый наружный блок (Таблица 6Б);
 - для всех разветвителей, кроме первого (Таблица 5А и 5Б).
- 6. Расчет дозаправки системы хладагентом (Таблица 7).

ТАБЛИЦА 1. ИНДЕКСЫ ПРОИЗВОДИТЕЛЬНОСТИ ВНУТРЕННИХ БЛОКОВ

Индекс модели внутреннего блока	18	24	30	40	50	60	72	90	115	125	140	160	200	250	280	400	450	560
Холодопроизводительность внутреннего блока (кВт)	1.8	2.2	2.8	3.6	4.5	5.6	7.1	9.0	11.2	12.5	14.0	16.0	20.0	25.0	28.0	40.0	45.0	56.0
Индекс производительности внутреннего блока, применяемый в расчетах	18	22	28	36	45	56	71	90	112	125	140	160	200	250	280	400	450	560

💠 ПОДБОР ЭЛЕМЕНТОВ ДЛЯ СЕРИИ

DX PRO MINI И DX PRO COMPACT

ТАБЛИЦА 2A. НАРУЖНЫЕ БЛОКИ СИСТЕМ DX PRO MINI И DX PRO COMPACT

DX PRO mini		KTRY120-	180HZAN3						
DX PRO Compact					кті	RY200-260HZ <i>F</i>	N3	KTRZ400-4	50HZAN3-C
Модель наружного блока	KTRY(Z)120	KTRY(Z)140	KTRY(Z)160	KTRY180	KTRY200	KTRY220	KTRY260	KTRZ400	KTRZ450
Условная производительность, НР	4	5	6	6.5	7	8	9	14	16
Индекс модели наружного блока	120	140	160	180	200	220	260	400	450
Диапазон загрузки, сумма индексов внутренних блоков	54 - 156	63 - 182	72 - 208	81 - 234	100 - 260	112 - 291	130 - 338	200-520	225-585
Максимальное число внутренних блоков	6	6	7	9	10	11	12	14	15

ТАБЛИЦА ЗА. ОГРАНИЧЕНИЯ ПО ДЛИНЕ ТРАССЫ ДЛЯ СИСТЕМ DX PRO MINI И DX PRO COMPACT

<u> </u>						
	Модель наружного б	тока		KTRY120-180HZAN3	KTRY200-260HZAN3	KTRZ400-450HZAN3
	Суммарная длина трассы т	рубопровода	L1+L2+L3+L4+L5+L6+ +a+b+c+d+e+f	≤ 100 M	≤ 120 m	≤ 250 m
Допустимая длина	От наружного блока до вн	треннего (эквивалентная)	Lm = L1+L3+L4+L5+L6+f	≤ 60 м (70 м)	≤ 60 м (70 м)	≤ 100 м (120 м)
трубопровода	От первого разветвителя д	о внутреннего блока	Lf = L3+L4+L5+L6+f	≤ 20 M	≤ 20 M	≤ 40 M
	Длина участка от ближайш внутреннего блока	его разветвителя до	a,b,c,d,e,f	≤ 15 M	≤ 15 M	≤ 15 M
Допустимый	Между внутренним и	Наружный блок выше внутреннего	H1	≤ 30 M	≤ 30 M	≤ 30 M
перепад высот	д Наружным блоками Наружный блок ниже		H2	≤ 20 M	≤ 20 M	≤ 20 M
	Между внутренними блока	МИ	h	≤ 8 M	≤ 8 M	≤ 8 M

ТАБЛИЦА 4А. ВЫБОР ПЕРВОГО РАЗВЕТВИТЕЛЯ И ДИАМЕТРОВ ТРУБ ДЛЯ УЧАСТКА ОТ НАРУЖНОГО БЛОКА ДО ПЕРВОГО РАЗВЕТВИТЕЛЯ

Сумма индексов	Суммарная длина всех трубопр	ооводов (газ + жидкость) < 90 м	Суммарная длина всех трубопроводов (газ + жидкость) ≥ 90 м			
всех внутренних блоков системы	Диаметр труб (газ / жидкость), мм	Модель первого разветвителя	Диаметр труб (газ / жидкость), мм	Модель первого разветвителя		
120, 140	15.9 / 9.5	KJR101E	19.1 / 9.5	KJR101E		
160, 180, 200, 220	19.1 / 9.5	KJR101E	22.2 / 9.5	KJR102E		
260	22.2 / 9.5	KJR102E	25.4 / 9.5	KJR102E		
400	22.2 / 12.7	KJR102E	25.4 / 12.7	KJR102E		
450	25.4 / 12.7	KJR102E	28.6 / 12.7	KJR103E		

ТАБЛИЦА 5А. ПОДБОР ТИПОВ РАЗВЕТВИТЕЛЕЙ И ДИАМЕТРА ТРУБ ДЛЯ УЧАСТКОВ МЕЖДУ РАЗВЕТВИТЕЛЯМИ

Сумма индексов	Основная труба (газ/жидкость)	Модель разветвителя			
Инд < 166	15.9 / 9.5	KJR101E			
166 ≤ Инд < 230	19.1 / 9.5	KJR101E			
230 ≤ Инд < 330	22.2 / 9.5	KJR102E			
330 ≤ Инд	25.4 / 12.7	KJR102E			

ТАБЛИЦА 6А. ПОДБОР ДИАМЕТРА ТРУБ НА УЧАСТКЕ ДО ВНУТРЕННЕГО БЛОКА

Индекс модели	Диаметр труб (газ / жидкость), мм					
внутреннего блока	Длина ≤ 10 м	Длина > 10 м				
18, 24, 30, 40 и 50	12.7 / 6.4	15.9 / 9.5				
60, 72, 90, 115, 125, 140, 160	15.9 / 9.5	19.1 / 12.7				

Примечания:

Для DX PRO MINI производительность внутренних блоков не должна превышать 7,1 кВт.

🗱 ПОДБОР ЭЛЕМЕНТОВ ДЛЯ СЕРИИ

DX PRO IV II DX PRO IV INDIVIDUAL

ТАБЛИЦА 25. НАРУЖНЫЕ БЛОКИ СИСТЕМ DX PRO IV И DX PRO IV INDIVIDUAL

Тип системы		DX PRO IV KTRZ250-500HZAN3-B(BT) базовые модули						DX PRO IV KTRZ560-900HZAN3-B большой производительности					
Модель наружного блока	KTRZ250	KTRZ290	KTRZ340	KTRZ400	KTRZ450	KTRZ500	KTRZ560	KTRZ615	KTRZ670	KTRZ730	KTRZ785	KTRZ850	KTRZ900
Условная производительность, НР	8	10	12	14	16	18	20	22	24	26	28	30	32
Индекс модели наружного блока	250	290	340	400	450	500	560	615	670	730	785	850	900
Диапазон загрузки, сумма индексов внутренних блоков	126-328	140-364	168-436	200-520	225-585	250-650	728-280	800-308	871-335	949-365	1020-392	1105-425	1170-450
Максимальное число внутренних блоков	13	16	19	23	26	29	33	36	39	43	46	50	53

ТАБЛИЦА 3Б. ОГРАНИЧЕНИЯ ПО ДЛИНЕ ТРАССЫ ДЛЯ СИСТЕМ DX PRO IV IN DX PRO IV INDIVIDUAL

	Модель наружного	блока	KTRZ250-500HZAN3-B(BT) KTRZ560-670HZAN3-B	KTRZ730-900HZAN3-B			
Допустимая	Суммарная длина трассы	трубопровода	≤ 1000 м см. формулу 1	≤ 1000 m	1) L1+(L2+L3+L4+L5+L6) x2+a+b+c+d+e+f		
длина трубопровода	От наружного блока до вн	утреннего (эквивалентная)	≤ 175 м (200 м)	≤ 165 м (190 м)	Lm = L1 + L3 + L4 + L5 + L6 + f		
	От первого разветвителя	до внутреннего блока	≤ 40 м (90 м*¹)	≤ 40 м (90 м*¹)	Lf = L3+L4+L5+L6+f		
Допустимый	Наружный блок выше Между внутренним и внутреннего		≤ 70 m*²	≤ 50 m	H1		
перепад наружным блоками Нару		Наружный блок ниже внутреннего	≤ 110 m*³	≤ 90 M	H2		
	Между внутренними блок	ами	≤ 30 M	≤ 30 M	h		

Примечания

ТАБЛИЦА 45. ВЫБОР ПЕРВОГО РАЗВЕТВИТЕЛЯ И ДИАМЕТРОВ ТРУБ ДЛЯ УЧАСТКА ОТ НАРУЖНОГО БЛОКА ДО ПЕРВОГО РАЗВЕТВИТЕЛЯ

Модель	•	наружного блока rтреннего < 90м		наружного блока утреннего ≥ 90м
наружного блока	Диаметр труб (газ / жидкость), мм	Модель первого разветвителя	Диаметр труб (газ / жидкость), мм	Модель первого разветвителя
DX PRO IV и DX PRO IV	(большой производительности)		•	
KTRZ250HZAN3	22.2 / 9.5	KJR102E	22.2 / 12.7	KJR102E
KTRZ290HZAN3	22.2 / 9.5	KJR102E	25.4*² / 12.7	KJR102E
KTRZ340-400HZAN3	25.4*1 / 12.7	KJR102E	28.6 / 15.9	KJR103E
KTRZ450HZAN3	28.6 / 12.7	KJR103E	31.8*² / 15.9	KJR103E
KTRZ500HZAN3	28.6 / 15.9	KJR103E	31.8*² / 19.1	KJR103E
KTRZ580-630HZAN3	28.6 / 15.9	KJR103E	31.8*² / 19.1	KJR103E
KTRZ690HZAN3	28.6 / 15.9	KJR103E	31.8*² / 19.1	KJR103E
KTRZ740-900HZAN3	31.8*1 / 19.1	KJR103E	38.1*2 / 22.2	KJR104E
KTRZ950-1350HZAN3	38.1* ¹ / 19.1	KJR104E	38.1*2 / 22.2	KJR104E
KTRZ1400-1790HZAN3	41.3 / 22.2	KJR105E	44.5*2 / 25.4*2	KJR105E
KTRZ1850-2000HZAN3	44.5*1 / 25.4	KJR105E	54.0 / 25.4	KJR106E
DX PRO IV Individual				
KTRZ560- KTRZ670HZAN3	28.6 / 15.9	KJR103E	31.8*2 / 19.1	KJR103E
KTRZ730- KTRZ900HZAN3	31.8*1 / 19.1	KJR103E	38.1*2 / 22.2	KJR104E

^{1.} Длина трубопровода от первого разветвителя до внутреннего блока не должна превышать 40 м, но при соблюдении ряда условий (см. инструкцию по монтажу DX PRO IV) может быть увеличена до 90 м.

^{2.} Если наружный блок установлен в самой высокой точке и разница высот превышает 20 м, рекомендуется устанавливать колена возврата масла (см. инструкцию по монтажу DX PRO IV).

^{3.} Если наружный блок установлен ниже внутренних и H2≥40 м, для основного трубопровода следует использовать трубы на размер больше (см. инструкцию по монтажу DX PRO IV).

ТАБЛИЦА 5Б. ПОДБОР ТИПОВ РАЗВЕТВИТЕЛЕЙ И ДИАМЕТРА ТРУБ ДЛЯ УЧАСТКОВ МЕЖДУ РАЗВЕТВИТЕЛЯМИ

	DX P	RO IV			
Сумма индексов	Основная труба (газ/жидкость)	Модель разветвителя			
Инд < 166	15.9 / 9.5	KJR101E			
166 ≤ Инд < 230	19.1 / 9.5	KJR101E			
230 ≤ Инд < 330	22.2 / 9.5	KJR102E			
330 ≤ Инд < 460	28.6 / 12.7	KJR103E			
460 ≤ Инд < 660	28.6 / 15.9	KJR103E			
660 ≤ Инд < 920	31.8* / 19.1	KJR103E			
920 ≤ Инд < 1350	38.1* / 19.1	KJR104E			
1350 ≤ Инд < 1800	41.3 / 22.2	KJR105E			
1800 ≤ Инд	44.5* / 25.4*	KJR105E			

ТАБЛИЦА 5В. ПОДБОР ТИПОВ РАЗВЕТВИТЕЛЕЙ ДЛЯ ОБЪЕДИНЕНИЯ МОДУЛЕЙ НАРУЖНОГО БЛОКА

Модель наружного блока	Комплект разветвителей, соединяющий модули наружного блока
DX PRO IV	
KTRZ250 - 500HZAN3	-
KTRZ580 - 1000HZAN3	KJRT02E
KTRZ1080 - 1500HZAN3	KJRT03E
KTRZ1580 - 2000HZAN3	KJRT04E
DX PRO IV Individual	
KTRZ560 - 900HZAN3	-

Примечания:

- 1. В случае отсутствия на местном рынке труб, отмеченных «*1», возможна их замена: Ø25.4 на Ø28.6; Ø31.8 на Ø34.9; Ø38.1 на Ø41.3, Ø44.5 на Ø54.0
- 2. В случае отсутствия на местном рынке труб, отмеченных «*2», возможна их замена: Ø25.4 на Ø22.2; Ø31.8 на Ø28.6; Ø38.1 на Ø34.9, Ø44.5 на Ø41.3. Однако замена приведет к незначительному падению холодопроизводительности внутренних блоков.

ТАБЛИЦА 6Б. ПОДБОР ДИАМЕТРА ТРУБ НА УЧАСТКЕ ДО ВНУТРЕННЕГО БЛОКА

Индекс модели	Диаметр труб (газ / жидкость), мм					
внутреннего блока	Длина ≤ 10м	Длина > 10м				
18, 24, 30, 40, 50	12.7 / 6.4	15.9 / 9.5				
60, 72, 90, 115, 125, 140, 160	15.9 / 9.5	19.1 / 12.7				
200, 250, 280, 400, 450, 560	См. техданные					

ТАБЛИЦА 7. КОЛИЧЕСТВО ДОЗАПРАВЛЯЕМОГО ФРЕОНА R410A В ЗАВИСИМОСТИ ОТ ДИАМЕТРА ТРУБОПРОВОДА ЖИДКОГО ХЛАДАГЕНТА

Диаметр трубопровода жидкого хладагента, мм	Количество дозаправляемого фреона R410A (жидкого хладагента), кг на 1 м длины трубопровода
6.4	0.022
9.5	0.06
12.7	0.11
15.9	0.17
19.1	0.26
22.2	0.36
25.4	0.52
28.6	0.68

 $R[\kappa r] = (Ls1 \times 0.022 \ \kappa r/m) + \ (Ls2 \times 0.06 \ \kappa r/m) + (Ls3 \times 0.11 \ \kappa r/m) + (Ls4 \times 0.19 \ \kappa r/m) + (Ls5 \times 0.29 \ \kappa r/m) + (Ls6 \times 0.38 \ \kappa r/m),$

Ls1 — суммарная длина трубопровода жидкого хладагента Ø6.4

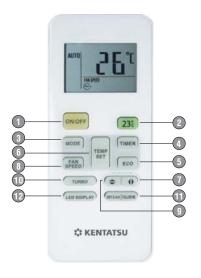
Ls2 — суммарная длина трубопровода жидкого хладагента Ø9.5

Ls3 — суммарная длина трубопровода жидкого хладагента Ø12.7

Ls4 — суммарная длина трубопровода жидкого хладагента Ø15.9

Ls5 — суммарная длина трубопровода жидкого хладагента Ø19.1

 ${f Ls6}$ — суммарная длина трубопровода жидкого хладагента Ø22.2



DX PRO

💠 ПУЛЬТЫ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

ИНФРАКРАСНЫЙ

KIC-75H

Беспроводной пульт КІС-75Н входит в стандартную комплектацию универсальных внутренних блоков серии КТНХ, а также подходит для управления многими блоками системы DX PRO. Пульт имеет элегантный дизайн и оснащен жидкокристаллическим дисплеем с подсветкой. Позволяет управлять различными функциями кондиционеров, такими как выбор режима работы, выбор скорости вентилятора, контроль температуры в локальной зоне и др. Дополнительной возможностью является функция адресации внутренних блоков.

- 1. Включение / выключение кондиционера.
- 2. Режим охлаждения с заданной температурой 23 °C.
- 3. Выбор режима работы (авто/охлаждение/осушка/нагрев/вентиляция).
- 4. Включение / выключение таймера.
- **5.** Экономичный режим.
- 6. Регулировка температуры.
- 7. Автоматическое качание вертикальных заслонок.
- 8. Выбор скорости вращения вентилятора (авто/низкая/средняя/высокая).
- 9. Автоматическое качание горизонтальных заслонок.
- 10. Быстрый выход на режим.
- Вспомогательный нагрев для осушки (левая часть кнопки); Температура в локальной зоне (правая часть кнопки).
- 12. Включение / выключение дисплея.

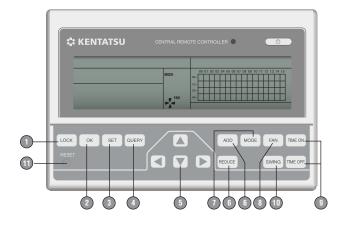
ПРОВОДНОЙ

KWC-51

Пульт имеет современный дизайн, изящный корпус. Пульт оснащен высококонтрастным дисплеем, на котором отображается вся необходимая пользователю информация о режиме работы и параметрах кондиционера. Эргономичная клавиатура и интуитивно понятный интерфейс обеспечивают простоту и легкость управления. Есть функция адрессации внутренних блоков.

- 1. Включение / выключение кондиционера.
- 2. Выбор режима работы (авто / охлаждение / осушка / нагрев / вентиляция).
- 3. Выбор скорости вращения вентилятора (авто / низкая / средняя / высокая / авто)
- Кнопка «ЕСО/ОК» переход к настройкам ЕСО в режимах нагрева или охлаждения / подтверждение выбранных параметров.
- 5. Включение / выключение таймера.
- **6.** Регулировка температуры / времени. Одновременное нажатие кнопок блокирует клавиатуру пульта управления.
- 7. Кнопка сброса индикатора очистки / Температура в локальной зоне.
- 8. Автоматическое качание горизонтальной заслонки.
- 9. Приемник ИК-сигнала с беспроводного пульта управления.

💠 ПУЛЬТЫ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ


ПРОВОДНОЙ

KWC-41, 43

ПУЛЬТ ГРУППОВОГО УПРАВЛЕНИЯ

KCC-21

Универсальный пульт для трехтрубных систем с рекуперацией тепла и двухтрубных систем Heat Pump. Проводной пульт управления для систем DX PRO с функциями «напоминание об очистке фильтра», «адресация внутренних блоков», «приемник сигнала для беспроводного пульта,» «блокировка пульта», «режим 23 °C». Этот пульт обычно размещают в непосредственной близости от внутреннего блока и соединяют проводами с платой управления кондиционера.

- 1. Включение / выключение кондиционера.
- 2. Выбор режима работы (авто / охлаждение / осушка / нагрев / вентиляция).
- 3. Выбор скорости вращения вентилятора (авто / низкая / средняя / высокая)
- 4. Кнопка «23°C/OК» быстрая установка указанной температуры / подтверждение выбранных параметров (для пульта KWC-41). Кнопка «Quiet/OK» - включает кондиционер в тихий режим.
- 5. Включение / выключение таймера; настройка времени.
- 6. Регулировка температуры / времени. При продолжительном нажатии обеих клавиш блокируются текущие настройки.
- 7. Кнопка сброса индикатора очистки / Температура в локальной зоне.
- 8. Автоматическое качание горизонтальной заслонки.
- 9. Приемник ИК-сигнала с беспроводного пульта управления.

Пульт предназначен для одновременного управления группой внутренних блоков (до 64) системы DX PRO. Нажатием кнопки «Следующий» или «Предыдущий» можно на его ЖК-дисплее осуществить мониторинг каждого внутреннего блока, если индикатор в нижней части пульта укажет на то, что данный блок в настоящее время включен.

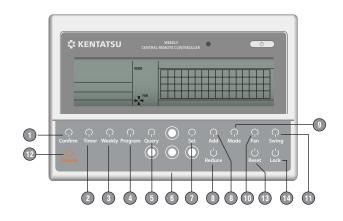
- 1. Кнопка «блокировка»:
 - в режиме настройки блокирует пульт внутреннего блока;
 - в режиме общих настроек блокирует/разблокирует переключение режимов (охлаждения / нагрев и пр.);
 - последовательное нажатие кнопок «запрос» и «блокировка» блокирует/разблокирует клавиатуру пульта группового управления;
- 2. Кнопка «ввод», при нажатии которой происходит передача данных.
- 3. Кнопка «настройки»: выводит информацию о настройках.
- 4. Кнопка «запрос»: выводит информацию о кондиционере.
- 5. Кнопки перемещения.
- 6. Кнопки «добавить» и «уменьшить». Служат для задания температуры, времени включения/выключения в режиме таймера.
- 7. Кнопка «режим». Служит для задания режима работы (охлаждение / нагрев / осушка / вентиляция / авто).
- 8. Кнопка «скорость вентилятора».
- 9. Кнопки «время включения/отключения».
- 10. Кнопка «качание заслонки».
- 11. Кнопка «отмена».

DX PRO

💠 ПУЛЬТЫ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

ЦЕНТРАЛЬНЫЙ ПУЛЬТ УПРАВЛЕНИЯ ВНУТРЕННИМИ БЛОКАМИ

KCC-41



Современный сенсорный пульт предназначен для управления группой внутренних блоков (не более 64) системы DX PRO. Пульт позволяет устанавливать все рабочие параметры внутренних блоков. Имеет функцию блокировки работы блоков, функцию напоминания о наступлении срока обслуживания фильтра.

- 1. Кнопка «ввод», при нажатии которой происходит передача данных;
- 2. Кнопки «время включения / отключения»;
- 3. Кнопка «настройки» позволяет выбрать один или все внутренние блоки для просмотра/изменения параметров;
- 4. Кнопка «запрос» выводит информацию о кондиционере;
- 5. Кнопка «сброс всех настроек»;
- Кнопка «режим». Служит для выбора режима работы (охлаждение / нагрев / вентиляция / выкл.);
- 7. Кнопка «скорость вентилятора» (авто / низкая / средняя / высокая);
- 8. Кнопка «качание заслонки»;
- 9. Кнопки «больше» и «меньше». Служат для задания температуры, времени включения / выключения в режиме таймера, вывода дополнительной информации о внутреннем блоке;
- 10. Кнопка «блокировки»;
- 11. Кнопка «включения / выключения кондиционера»;
- 12. Кнопки перемещения вверх / вниз и влево / вправо.

ЦЕНТРАЛЬНЫЙ ПУЛЬТ С НЕДЕЛЬНЫМ ТАЙМЕРОМ

KCC-23

Центральный пульт КСС-23 имеет больше возможностей для управления внутренними блоками (по сравнению с центральным пультом КСС-21) благодаря недельному таймеру, который позволяет программировать для внутренних блоков до 4 различных режимов в сутки (до 28 режимов в неделю). При программировании задаются не только время включения и выключения блока, но и режим работы, температура и скорость вращения вентилятора. Центральный пульт позволяет управлять 64 группами внутренних блоков или до 64 отдельными внутренними блоками системы DX PRO.

- Кнопка «подтвердить». При нажатии происходит сохранение и передача данных.
- 2. Кнопка «время». Задает текущее дату и время.
- Кнопка «недельный таймер».
- 4. Кнопка «программа». Используется для работы с недельным таймером.
- Кнопка «запрос». Выводит информацию о работе кондиционера (включен/выключен, уставленное значение температуры, температура в помещении, текущий режим, скорость вентилятора.
- 6. Кнопки «перемещения».
- 7. Кнопка «настройки». С помощью этой кнопки выбирается режим «set single» или «set all»

В режиме «set single» выводится информация о настройках выбранного внутреннего блока, таких как: режим работы, температура, скорость вентилятора, недельный таймер

В режиме «set all» выводится информация о настройках всех внутренних блоков, подключенных к центральному пульту

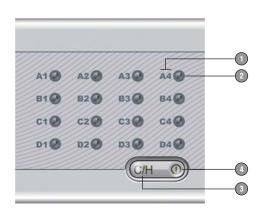
- 8. Кнопки «добавить» и «уменьшить». Служат для задания температуры, времени включения / выключения в режиме таймера, вывода дополнительной информации о внутреннем блоке.
- 9. Кнопка «режим». Служит для задания режима работы (охлаждения / нагрев / осушка / вентиляция / авто).
- 10. Кнопка «скорость вентилятора».
- 11. Кнопка «качание заслонки».
- 12. Кнопка «отмена».
- Кнопка «перезагрузить». Производит сканирование подключенных внутренних блоков.
- 14. Кнопка «блокировка».
- в режиме настройки блокирует пульт внутреннего блока;
- в режиме общих настроек блокирует / разблокирует переключение режимов (охлаждения / нагрев и пр.);

последовательное нажатие кнопок «запрос» и «блокировка» блокирует / разблокирует клавиатуру пульта группового управления.

💠 ПУЛЬТЫ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

ШЕНТРАЛЬНЫЙ ПУЛЬТ УПРАВЛЕНИЯ НАРУЖНЫМИ БЛОКАМИ

KCC-22



Этот центральный пульт управления может осуществлять централизованное управление и запрос данных с наружных блоков. Один центральный пульт можно подключить к максимум 32 наружным блокам системы DX PRO через сетевой интерфейсный модуль. Данный пульт значительно упрощает сервисное обслуживание.

- 1. Кнопка «запрос». Нажатие активирует режим запроса.
- 2. Кнопка «установка». Переход на страницу установок.
- 3. Кнопка «режим». Служит для задания режима принудительного охлаждения и выключением.
- 4. Кнопка «ввод». При нажатии происходит сохранение и передача дан-
- 5. Кнопка «предыдущий блок». Нажмите, чтобы ввести настройки предыдущего блока.
- **6.** Кнопка «следующий блок». Нажмите, чтобы ввести настройки следующего блока.
- 7. Кнопка «вверх». Выводит информацию о текущем блоке, находящуюся на предыдущей странице.
- 8. Кнопка «вниз». Выводит информацию о текущем блоке, находящуюся на следующей странице.
- 9. Кнопка «установка адресов».
- 10. Кнопка «блокировка».

ПУЛЬТ ГРУППОВОГО УПРАВЛЕНИЯ

KCC-30

Упрощенный центральный пульт управления предназначен для управления группой внутренних блоков (до 16). Позволяет включать и выключать внутренние блоки, а также поддерживать два режима работы: охлаждение и нагрев. Задание подробных рабочих конфигураций внутренних блоков осуществляется на месте локальными средствами управления.

- 1. Номер внутреннего блока.
- 2. Индикатор режима работы внутреннего блока охлаждение / нагрев.
- 3. Переключатель режима работы (охлаждение / нагрев).
- 4. Централизованное управление (короткое нажатие вкл. / выкл. последнего использующегося внутреннего блока; продолжительное нажатие (3 сек.) — вкл. / выкл. всех внутренних блоков.

DX PRO

😩 ЦЕНТРАЛИЗОВАННОЕ УПРАВЛЕНИЕ КОНДИЦИОНИРОВАНИЕМ

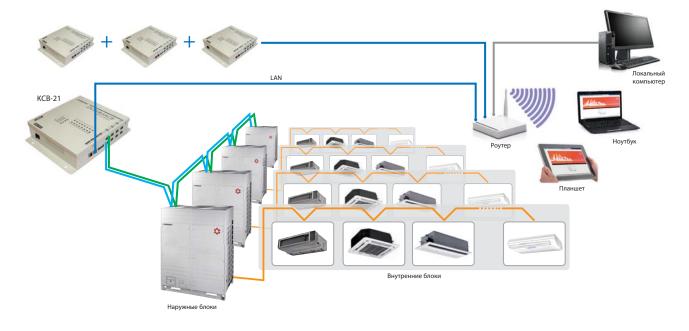
Система централизованного компьютерного управления и мониторинга

Система управления состоит из следующих основных элементов:

- 1. До 4 интерфейсных блоков КСВ-21 с функцией web-сервера.
- 2. Роутер для подключения интерфейсных блоков и коммуникации с сетями.
- 3. Программное обеспечение KNC2.5, устанавливаемое на компьютер, который подключается по локальной сети или через Интернет. В качестве пультов дистанционного управления системой могут использоваться дополнительные локальные компьютеры, планшеты, ноутбуки, смартфоны.

Основные особенности

- Доступ в Интернет.
- Дружественный интерфейс управления, интеграция в среду Autocad.
- Совместимость с системами мониторинга и управления зданием.


Основные функции

- Индивидуальное управление блоками системы: переключение режимов работы, задание значений температуры, блокировка/разблокировка пультов дистанционного управления.
- Регулирование производительности и задание временных интервалов работы кондиционеров на основе программируемого графика работы (до 1 года).
- Составление отчетов о работе и загрузке оборудования (ежедневных, еженедельных, ежеме-
- Пропорциональное распределение потребляемой электроэнергии между наружными блоками, в зависимости от типа помещений, пустующих площадей, а также времени суток. Предоставление информации в виде расчетных таблиц, что позволяет формировать индивидуальные счета за электроэнергию для каждого пользователя.
- Индикация недопустимо низкой нагрузки.
- Автоматическое создание резервной копии на SD-карту при возникновении сбоев в электроснабжении или при системной неполадке. Сохранение на жестком диске данных за последние три месяца.
- Индикация необходимости замены фильтра.
- Индикация неисправностей и сообщение о них на мобильные средства связи.
- Функция аварийной остановки и подключение к внешней сигнализации посредством контактов.

Системные требования

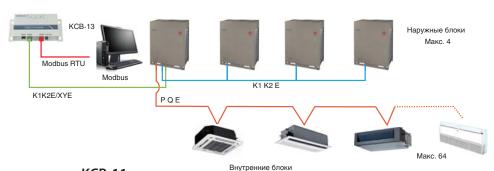
- Операционная система: Windows XP Professional (версия на английском языке), Windows 7 Home/Premium/Professional (поддержка 8 различных языков интерфейса), 32-bit версия.
- Процессор: Intel Pentium 2.5 GHz или выше.
- Жесткий диск: 80 GB и более свободного места.
- Оперативная память: 2 GB и выше.
- Разрешение дисплея: 1024 х 768 точек и выше.

Система централизованного компьютерного управления компании Kentatsu обеспечивает полный мониторинг систем кондиционирования DX PRO, а также управление ими. Система допускает подключение до 4 интерфейсных блоков (сетевых шлюзов) КСВ-21. Один шлюз рассчитан на работу с 64 наружными и 256 внутренними блоками. Всего система может управлять 1024 внутренними блоками.

💠 ЦЕНТРАЛИЗОВАННОЕ УПРАВЛЕНИЕ КОНДИЦИОНИРОВАНИЕМ

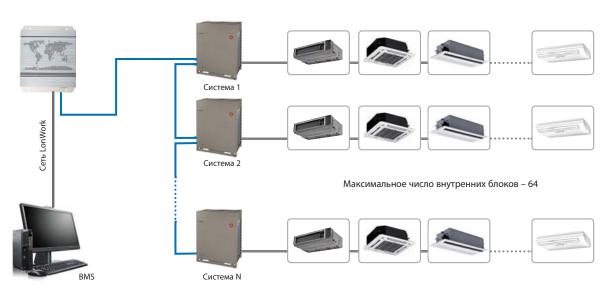
Интеграция с системой управления зданием (BMS). Modbus-шлюз КСВ-13

Устройство КСВ-13 предназначено для интеграции центральных многозональных систем кондиционирования DX PRO в систему управления зданием (BMS) по протоколу Modbus.


К одному шлюзу КСВ-13 можно подключить параллельно 1 центральный пульт управления КСС-22 (до 4 наружных блоков) и 1 центральный пульт КСС-21 (до 64 внутренних блоков), В одну Modbus-сеть можно объединить до 16 устройств КСВ-13 с возможностью управления 1024 внутренними блоками и 64 наруж-

Передача данных в режиме RTU или TCP.

Передача данных по протоколу ТСР


Передача данных по протоколу RTU

LonWork-шлюз, модель KCB-11

Устройство КСВ-11 позволяет интегрировать центральные системы кондиционирования DX PRO в систему управления зданием (BMS) по протоколу LonWorks. Интеграция производится напрямую и не требует подключения к промежуточным системам компьютерного управления.

LonWork-шлюз может осуществлять управление 64 внутренними блоками и их мониторинг.

DX PRO

‡ ФАНКОЙЛЫ

Конструктивно фанкойл состоит из следующих основных элементов: поверхностного воздушного теплообменника, фильтра для очистки воздуха, вентиляционного агрегата, обеспечивающего движение воздуха.

Компания Kentatsu поставляет 2-трубные и 4-трубные фанкойлы напольно-потолочного, кассетного, канального и настенного типа, причем во многих моделях трубопровод может быть подведен как слева, так и справа. Каждый модельный ряд фанкойлов характеризуется широким диапазоном холодо- и теплопроизводительности, который зависит от площади поверхности теплообменника, размеров и количества вентиляторов.

Температура подаваемой в фанкойл воды составляет при охлаждении 5–7 °C, при нагреве — 40–80 °C. Почти у всех фанкойлов предусмотрено трехступенчатое изменение скорости вращения электродвигателя вентилятора, что позволяет подобрать более комфортный режим выхода на заданную температуру. В нижней части корпуса фанкойла имеется поддон для сбора и слива конденсата в общую дренажную линию.

Управление фанкойлом осуществляется посредством индивидуального термостата или с помощью пульта дистанционного управления. Возможно подключение фанкойлов к единой системе централизованного управления инженерными коммуникациями всего здания.

Шум, создаваемый фанкойлом, который монтируется непосредственно в жилом помещении, по данным испытаний EUROVENT составляет от 33 дБА.

Центральная система кондиционирования с фанкойлами успешно используется для достижения комфортного теплового режима на объектах с большим числом помещений или при больших площадях помещений:

- большие офисы, банки, учебные заведения и школы;
- больницы и медицинские центры;
- различные предприятия торговли от магазинов до гипермаркетов;
- гостиницы и рестораны;
- предприятия транспорта (аэро, железнодорожные и морские вокзалы, автостанции и т. п.);
- спортивные и развлекательные центры;
- учреждения культуры: музеи, кинотеатры, киноконцертные залы и т. д.

КОМПЛЕКТАЦИЯ ФАНКОЙЛОВ

Тип фанкойла	Панель	Проводной пульт/ Термостат	Фильтр	Дренажный поддон для 3-ходового вентиля	3-ходовой вентиль	Комплект трубной обвязки	Комплект трубной обвязки с 3-ходовым вентилем
KFZF кассетный (600х600)	KPU65-C**	KWC-22		KFD-Z	KFV21	KFP21-Z1	KFV21-Z1
KQZF кассетный (600х600)	KPU65-C**	KWC-22		KFD-Z	KQV22	KQP21-Z1	KQV21-Z1
KFVE кассетный	KPU95-C**	KWC-22		KFD-V	KFV21	KFP21-V1	KFV21-V1
KQVE кассетный	KPU95-C**	KWC-22		KFD-V	KQV22	KQP21-V1	KQV21-V1
KFKD канальный средненапорный	\	KFC-12			KFV21	KFP21-K1	KFV21-K1
KQKD канальный средненапорный	\	KFC-15			KQV21	KQP21-K1	KQV21-K1
KFTE канальный высоконапорный	\	KFC-12			KFV21	KFP21-T1/T2/T3 *	KFV21-T1/T2/T3 *
KFHE/KFHD напольно-потолочный	\	KFC-12			KFV21	KFP12-H1L/R***	KFV12-H1L/R***
KFGA/KFGB настенный	\	KWC-22					

^{* -} Для КҒТЕ65Н0ЕN1 используется трубная обвязка КҒР(V)21-Т1, для КҒТЕ120Н0ЕN1 - КҒР(V)21-Т2, для остальных канальных высоконапорных фанкойлов используется - КҒР(V)21-Т3.

^{** -} Обязательное дополнительное оборудование.

^{***-} Комплект трубной обвязки с 3-ходовым вентилем может быть как левосторонним KFP(V)12-H1L, так и правосторонним KFP(V)12-H1R.

⁻ входит в стандартный комплект

💠 ФАНКОЙЛЫ КАССЕТНОГО ТИПА

ЧЕТЫРЕХПОТОЧНЫЕ 600Х600

2-трубные кассетные фанкойлы с размерами 600х600 мм представлены 4 моделями холодопроизводительностью от 3 до 4.5 кВт. Все они предназначены для установки в пространство за подвесным потолком и снабжены декоративной панелью. Характеризуются следующими потребительскими свойствами:

- комфортное распределение воздушного потока по четырем направлениям;
- специальная конструкция центробежного вентилятора, а также управление его скоростью позволяет сделать работу фанкойлов малошумной (4 скорости);
- легкая установка и удобная эксплуатация фанкойла;
- дренажный насос (с высотой подъема до 500 мм) встроен в конструкцию фанкойла;
- функция автоматического перезапуска;
- высокие производительность и энергоэффективность.

В стандартную комплектацию фанкойлов серий КFZF входят воздушный фильтр и проводной пульт управления KWC-22. Дополнительно могут быть укомплектованы 3-ходовым вентилем KFV21, комплектом трубной обвязки KFP21-Z1, дренажным поддоном KFD-Z.

Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений \varnothing 3/4".

ПУЛЬТ УПРАВЛЕНИЯ

KWC-22 в комплекте

МОДЕЛЬНЫЙ РЯД

KFZF30H0EN1 KFZF38H0EN1 KFZF43H0EN1 KFZF48H0EN1

МОДЕЛЬ ДЕКОРАТИВНАЯ ПАНЕЛЬ			KFZF30H0EN1 KPU65-C	KFZF38H0EN1 KPU65-C	KFZF43H0EN1 KPU65-C	KFZF48H0EN1 KPU65-C		
		Охлаждение	3.0	3.7	4.1	4.5		
Производительность	кВт	Нагрев	4.0	5.1	5.6	6.0		
Электропитание	В, Гц, Ф	-	220~240, 50, 1					
Потребляемая мощность	Вт	Охлаждение	50	70	82	95		
Максимальный рабочий ток	Α	-	0.22	0.30	0.35	0.40		
Расход воздуха	м³/ч	Высокий	510	680	765	850		
Уровень шума	дБА	Максимальный	36	42	43	45		
F=6 (IIID-F)		Блок	575x260x575					
Габариты (ШхВхГ)	MM	Декоративная панель	647x50x647					
D		Блок	17.5					
Bec	КГ	Декоративная панель		:	3			

💠 ФАНКОЙЛЫ КАССЕТНОГО ТИПА

ЧЕТЫРЕХПОТОЧНЫЕ 600Х600

4-трубные кассетные фанкойлы с размерами 600х600 представлены 4 моделями производительностью от 2.5 до 3.5 кВт. Они подходят для установки в пространство за подвесным потолком и снабжены декоративной панелью КРU65-С.

- Высокая производительность и энергоэффективность.
- Комфортное распределение воздушного потока по четырем направлениям.
- Встроенный дренажный насос обеспечивает подъем конденсата на высоту до 500 мм.
- Специальная конструкция центробежного вентилятора, а также управление его скоростью позволяет сделать работу фанкойлов малошумной (4 скорости).

В стандартную комплектацию фанкойла входит воздушный фильтр и проводной пульт управления KWC-22. Дополнительно фанкойл может быть укомплектован 3-ходовым вентилем KQV22, комплектом трубной обвязки KQP21-Z1, дренажным поддоном KFD-Z.

Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений:

- холодная вода ∅3/4";
- горячая вода ∅1/2″.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-22 в комплекте

МОДЕЛЬНЫЙ РЯД

KQZF25H0EN1 KQZF30H0EN1 KQZF32H0EN1 KQZF35H0EN1

МОДЕЛЬ ДЕКОРАТИВНАЯ ПАНЕЛЬ			KQZF25H0EN1 KPU65-C	KQZF30H0EN1 KPU65-C	KQZF32H0EN1 KPU65-C	KQZF35H0EN1 KPU65-C	
		Охлаждение	2.5	2.9	3.2	3.5	
Производительность	кВт	Нагрев	3.7	4.6	4.8	5.1	
Электропитание	В, Гц, Ф	-	220~240, 50, 1				
Потребляемая мощность	Вт	Охлаждение	50	70	80	95	
Максимальный рабочий ток	Α	-	-	-	-	-	
Расход воздуха	м³/ч	Выс./сред./низ.	510/440/360	680/580/480	760/420/450	850/730/600	
Уровень шума	дБА	Выс./сред./низ.	36/33/28	42/39/32	43/40/33	45/42/34	
5.6 (11.0.5)		Блок		575x2	60x575		
Габариты (ШхВхГ) мм		Декоративная панель		647x5	60x647		
		Блок	16.5				
Bec	КГ	Декоративная панель	3				

ф ФАНКОЙЛЫ КАССЕТНОГО ТИПА

ЧЕТЫРЕХПОТОЧНЫЕ

2-трубные кассетные фанкойлы представлены 6 моделями холодопроизводительностью от 5.7 до 12.9 кВт. Они предназначены для установки в пространство за подвесным потолком и снабжены декоративной панелью KPU95-C (габариты 950х46х950 мм) с регулируемыми заслонками для создания оптимального движения воздушного потока в помещении в четырех направлениях.

- Фанкойлы снабжены трехскоростным малошумным вентилятором и эффективным воздушным фильтром.
- Дренажный насос (с высотой подъема до 750 мм) встроен в конструкцию фанкойла.
- В стандартную комплектацию фанкойлов серий KFVE входят воздушный фильтр и проводной пульт управления KWC-22. Дополнительно могут быть укомплектованы 3-ходовым вентилем KFV21, комплектом трубной обвязки KFP21-V1, дренажным поддоном KFD-V.
- Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений \emptyset 3/4".

ПУЛЬТ УПРАВЛЕНИЯ

KWC-22 в комплекте

МОДЕЛЬНЫЙ РЯД

KFVE57H0EN1D KFVE70H0EN1D KFVE78H0EN1D KFVE89H0EN1D KFVE112H0EN1D KFVE140H0EN1D

МОДЕЛЬ ДЕКОРАТИВНАЯ ПАНЕЛЬ			KFVE57H0EN1D KPU95-C	KFVE70H0EN1D KPU95-C	KFVE78H0EN1D KPU95-C	KFVE89H0EN1D KPU95-C	KFVE112H0EN1D KPU95-C	KFVE140H0EN1D KPU95-C	
		Охлаждение	5.7	7	7.3	8.2	10.3	12.9	
Производительность кВт	KBT	Нагрев	9.6	11.5	13.4	13.8	17.6	21.0	
Электропитание	В, Гц, Ф	-	220~240, 50, 1						
Потребляемая мощность	кВт	Охлаждение	0.125	0.13	0.15	0.155	0.19	0.19	
Максимальный рабочий ток	А	-	0.56	0.6	0.68	0.7	0.86	0.86	
Расход воздуха	м³/ч	Высокий	1000	1250	1400	1600	2000	2550	
Уровень шума	дБА	Максимальный	45	46	47	48	49	49	
F.C. (III.D.F)		Блок	840x230x840						
Габариты (ШхВхГ) мм		Декоративная панель	950x46x950						
_		Блок	2	19		3	5		
Bec	КГ	Декоративная панель				5			

💠 ФАНКОЙЛЫ КАССЕТНОГО ТИПА

ЧЕТЫРЕХПОТОЧНЫЕ

4-трубные кассетные фанкойлы представлены 6 моделями холодопроизводительностью от 5.1 до 10.6 кВт. Они предназначены для установки в пространство за подвесным потолком и снабжены декоративной панелью КРU95-С с регулируемыми заслонками для создания оптимального движения воздушного потока в помещении в четырех направлениях.

- Высокая производительность и энергоэффективность.
- Встроенный дренажный насос обеспечивает подъем конденсата на высоту до 750 мм.
- Специальная конструкция центробежного вентилятора, а также управление его скоростью позволяет сделать работу фанкойлов малошумной (4 скорости).

В стандартную комплектацию фанкойла входит воздушный фильтр и проводной пульт управления КWC-22. Дополнительно фанкойл может быть укомплектован 3-ходовым вентилем KQV22, комплектом трубной обвязки KQP21-V1, дренажным поддоном KFD-Z.

Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений:

- холодная вода ∅3/4";
- горячая вода Ø1/2".

ПУЛЬТ УПРАВЛЕНИЯ

KWC-22 в комплекте

МОДЕЛЬНЫЙ РЯД

KQVE50H0EN1D KQVE60H0EN1D KQVE62H0EN1D KQVE67H0EN1D KQVE93H0EN1D KQVE105H0EN1D

МОДЕЛЬ ДЕКОРАТИВНАЯ ПАНЕЛЬ	· ·			KQVE60H0EN1D KPU95-C	KQVE62H0EN1D KPU95-C	KQVE67H0EN1D KPU95-C	KQVE93H0EN1D KPU95-C	KQVE105H0EN1D KPU95-C
Производительность		Охлаждение	5.1	5.9	6.2	6.7	9.3	10.6
производительность	кВт	Нагрев	6.7	7.9	8.1	8.7	11.7	12.6
Электропитание	В, Гц, Ф	-			220~24	10, 50, 1		
Потребляемая мощность	кВт	Охлаждение	170	188	198	205	197	234
Максимальный рабочий ток	А	-	-	-	-	-	-	-
Расход воздуха	м³/ч	Выс./сред./низ.	1150/800/690	1460/1020/880	1480/1040/890	1720/1200/1030	1860/1300/1110	2100/1470/1260
Уровень шума	дБА	Выс./сред./низ.	42/32/26	44/34/28	46/36/30	47/38/32	48/40/34	50/42/36
5.6 (III.D.5)		Блок			840x3	00x840		
Габариты (ШхВхГ)	MM	Декоративная панель	950x45x950					
		Блок		3	15		3	88
Bec	КГ	Декоративная панель	6					

💠 ФАНКОЙЛЫ КАНАЛЬНОГО ТИПА

СРЕДНЕНАПОРНЫЕ

2-трубные средненапорные канальные фанкойлы представлены 9 моделями с холодопроизводительностью от 2 до 12.3 кВт. Все они предназначены для установки в пространство за подвесным потолком. В фанкойле установлены четырехскоростные малошумные вентиляторы, количество которых в зависимости от холодопроизводительности может достигать 4.

- Внешнее статическое давление до 50 Па.
- В комплект поставки входит воздушный фильтр.
- Дренажный поддон имеет специальное защитное покрытие.
- Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений \emptyset 3/4".
- Дополнительно могут быть снабжены 3-ходовым вентилем KFV21, комплектом трубной обвязки KFP21-K1, термостатом KFC-12.

МОДЕЛЬНЫЙ РЯД

KFKD20H0EN1 KFKD30H0EN1 KFKD38H0EN1

KFKD48H0EN1 KFKD57H0EN1 KFKD70H0EN1 KFKD89H0EN1 KFKD112H0EN1 KFKD140H0EN1

модель	модель			KFKD30H0EN1	KFKD38H0EN1	KFKD48H0EN1	KFKD57H0EN1
Произродитов ност	D=	Охлаждение	2.0	2.7	3.6	4.4	5.5
Производительность	кВт	Нагрев	3.2	4.3	5.4	6.8	8.1
Электропитание	В, Гц, Ф	-	220~240, 50, 1				
Потребляемая мощность	Вт	Охлаждение	45	60	67	89	110
Максимальный рабочий ток	Α	-	0.21	0.28	0.31	0.41	0.50
Расход воздуха	м³/ч	Выс./сред./низ.	340/255/170	510/385/255	680/510/340	850/640/425	1020/765/510
Внешнее статическое давление	Па	-			50		
Уровень шума	дБА	Выс./сред./низ.	41/37/31	41/37/32	42/39/33	45/41/34	46/41/35
Габариты	ММ	ШхВхГ	757x241x506	812x241x506	912x241x506	912x241x506	1135x241x506
Bec	кг	-	16	18.5	20	20	24

модель			KFKD70H0EN1	KFKD89H0EN1	KFKD112H0EN1	KFKD140H0EN1	
	D-	Охлаждение	7.5	8.9	10.8	12.3	
Производительность кВт	кВт	Нагрев	11.0	13.5	16.5	19.5	
Электропитание	В, Гц, Ф	-	220~240, 50, 1				
Потребляемая мощность	Вт	Охлаждение	130	171	212	249	
Максимальный рабочий ток	Α	-	0.59	0.78	0.97	1.13	
Расход воздуха	м³/ч	Выс./сред./низ.	1360/1020/680	1700/1275/850	2040/1530/1020	2380/1785/1190	
Внешнее статическое давление	Па	-		5	0		
Уровень шума	дБА	Выс./сред./низ.	46/41/36	47/43/37	48/44/38	49/44/39	
Габариты	MM	ШхВхГ	435x241x506	1540x241x506	1830x241x506	1992x241x506	
Bec	КГ	-	33	38	43	47	

💠 ФАНКОЙЛЫ КАНАЛЬНОГО ТИПА

СРЕДНЕНАПОРНЫЕ

4-трубные средненапорные канальные фанкойлы представлены 9 моделями с холодопроизводительностью от 2 до 11.5 кВт. Они предназначены для установки в пространство за подвесным потолком. В фанкойлах установлены четырехскоростные малошумные вентиляторы.

- Внешнее статическое давление до 50 Па.
- Дренажный поддон V-образной формы имеет специальное защитное покрытие.

В стандартную комплектацию фанкойла входит воздушный фильтр и дренажный поддон. Дополнительно фанкойл может быть укомплектован 3-ходовым вентилем KQV21, комплектом трубной обвязки KQP21-K1, термостатом KFC-15.

Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений \varnothing 3/4".

МОДЕЛЬНЫЙ РЯД

KQKD20H0EN1 KQKD27H0EN1 KQKD38H0EN1 KQKD43H0EN1 KQKD50H0EN1 KQKD68H0EN1 KQKD78H0EN1 KQKD102H0EN1 KQKD115H0EN1

модель			KQKD20H0EN1	KQKD27H0EN1	KQKD38H0EN1	KQKD43H0EN1	KQKD50H0EN1
Произродитов ност	кВт	Охлаждение	2.0	2.7	3.6	4.3	5.0
Производительность	KBT	Нагрев	3.0	4.0	5.2	5.7	7.2
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1				
Потребляемая мощность	Вт	Охлаждение	49	64	75	96	114
Максимальный рабочий ток	А	-	-	-	-	-	-
Расход воздуха	м³/ч	Выс./сред./низ.	340/255/170	510/385/255	680/510/340	850/640/425	1020/765/510
Внешнее статическое давление	Па	-			50		
Уровень шума	дБА	Выс./сред./низ.	41/37/31	42/38/32	43/39/33	44/40/34	45/41/35
Габариты	мм	ШхВхГ	741x241x522	841x241x522	941x241x522	941x241x522	1161x241x522
Вес	кг	-	15.1	17.5	20.7	20.7	23.5

модель			KQKD68H0EN1	KQKD78H0EN1	KQKD102H0EN1	KQKD115H0EN1	
	D=	Охлаждение	6.8	7.8	10.2	11.5	
Производительность кВт	KBT	Нагрев	9.6	10.8	13.5	15.5	
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1				
Потребляемая мощность	Вт	Охлаждение	154	193	230	278	
Максимальный рабочий ток	Α	-	-	-	-	-	
Расход воздуха	м³/ч	Выс./сред./низ.	1360/1020/680	1700/1275/850	2040/1530/1020	2380/1785/1190	
Внешнее статическое давление	Па	-		5	0		
Уровень шума	дБА	Выс./сред./низ.	46/42/36	47/43/37	48/44/38	49/45/39	
Габариты	мм	ШхВхГ	1461x241x522	1566x241x522	1856x241x522	2022x241x522	
Bec	КГ	-	32.4	34.9	40	43.6	

💠 ФАНКОЙЛЫ КАНАЛЬНОГО ТИПА

ВЫСОКОНАПОРНЫЕ

2-трубные высоконапорные канальные фанкойлы представлены 7 моделями с холодопроизводительностью от 6.6 до 20 кВт. Они предназначены для установки в пространство за подвесным потолком.

- Внешнее статическое давление до 100 Па.
- В комплект поставки входит воздушный фильтр.
- Дренажный поддон имеет специальное защитное покрытие.
- Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений \varnothing 3/4".
- Дополнительно могут быть снабжены 3-ходовым вентилем KFV21, комплектом трубной обвязки КFP21-T1/T2/T3, термостатом КFC-12.

МОДЕЛЬНЫЙ РЯД

KFTE112H0EN1

KFTE65H0EN1 KFTE120H0EN1 KFTE200H0EN1 KFTE89H0EN1 KFTE140H0EN1 KFTE158H0EN1

модель			KFTE65H0EN1	KFTE89H0EN1	KFTE112H0EN1	KFTE120H0EN1	
	кВт	Охлаждение	6.6	8.8	10	12	
Производительность	КВТ	Нагрев	9.7	13.2	15.0	17.9	
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1				
Потребляемая мощность	Вт	Охлаждение	350	350	350	350	
Максимальный рабочий ток	Α	-	1.6	1.6	1.6	1.6	
Расход воздуха	м³/ч	Выс./сред./низ.	1360/1224/1088	1700/1530/1377	2040/1877/1612	2380/2118/1856	
Внешнее статическое давление	Па	-		7	0		
Уровень шума	дБА	Максимальный	62	61	61	60	
Габариты	ММ	ШхВхГ	946x400x816	946x400x816	946x400x816	946x400x816	
Bec	КГ	-	50	52	52	54	

модель			KFTE140H0EN1	KFTE158H0EN1	KFTE200H0EN1					
Производительность	D=	Охлаждение	14.1	15.8	19.9					
	кВт	Нагрев	21.2	23.8	30.0					
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1							
Потребляемая мощность	бляемая мощность Вт Охла		550	800	950					
Максимальный рабочий ток	Α	-	2.5	3.7	4.4					
Расход воздуха	м³/ч	Выс./сред./низ.	2720/2450/2170	3060/2754/2448	3740/3360/2990					
Внешнее статическое давление	Па	-		100						
Уровень шума	дБА	Максимальный	62	63	66					
Габариты	ММ	ШхВхГ	1290x400x809	1290x400x809	1290x400x809					
Bec	КГ	-		76						

💠 ФАНКОЙЛЫ НАСТЕННОГО ТИПА

Настенные 2-трубные фанкойлы представлены 5 моделями холодопроизводительностью от 2.63 до 5.0 кВт.

- Фанкойлы имеют возможность регулировки направления воздушного потока в горизонтальном направлении и функцию автоматического качания заслонок для оптимального кондиционирования помещения.
- Фанкойлы оснащены трехскоростным малошумным вентилятором тангенциального типа.
- В стандартной комплектации встроенный трехходовой клапан с электромагнитным приводом.
- Управление фанкойлом осуществляется с проводного пульта, поставляемого в стандартной комплектации.

Подсоединение водяных труб к фанкойлу может быть проведено четырьмя способами сбоку или с тыльной стороны с помощью резьбовых соединений \varnothing 3/4".

 Лицевая панель легко снимается для предоставления большего удобства при обслуживании.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-22 в комплекте

МОДЕЛЬНЫЙ РЯД

KFGA27H0EN1 KFGA30H0EN1 KFGA33H0EN1 KFGA42H0EN1 KFGA50H0EN1

модель			KFGA27H0EN1	KFGA30H0EN1 KFGA33H0EN1		KFGA42H0EN1	KFGA50H0EN1			
Производительность		Охлаждение (Выс./сред./низ.)	2.63/2.41/2.16 2.97/2.47/2.12 3.:		3.28/2.83/2.41	4.25/3.85/3.32	5/4.47/3.97			
	кВт	Нагрев (Выс./сред./низ.)	3.36/3.1/2.79	3.91/3.26/2.77	4.37/3.73/3.17	5.81/5.17/4.43	6.7/6/5.28			
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1							
Потребляемая мощность	Вт	Охлаждение	24	37	40 50		66			
Расход воздуха	м³/ч	Выс./сред./низ.	425/390/350	510/470/390	680/550/460	850/745/620	1020/915/780			
Уровень шума	дБА	Выс./сред./низ.	30/24/20	35/29/24	37/31/26	39/33/28	40/34/29			
Габариты	ММ	ШхВхГ	915x290x230 1072x315x230							
Bec	КГ		13	13	13.3	13.3 15.8				

💠 ФАНКОЙЛЫ НАСТЕННОГО ТИПА

Настенные 2-трубные фанкойлы представлены 5 моделями холодопроизводительностью от 2.20 до 4.45 кВт.

- Фанкойлы имеют возможность регулировки направления воздушного потока в горизонтальном направлении и функцию автоматического качания заслонок для оптимального кондиционирования помещения.
- Фанкойлы оснащены трехскоростным малошумным вентилятором тангенциального типа.
- В стандартную комплектацию фанкойлов входит встроенный трехходовой клапан с электромагнитным приводом.
- Управление фанкойлом осуществляется с проводного пульта KWC-22, поставляемого в стандартной комплектации.

ПУЛЬТ УПРАВЛЕНИЯ

KWC-22 в комплекте

МОДЕЛЬНЫЙ РЯД

KFGB22H0EN1 KFGB27H0EN1 KFGB30H0EN1 KFGB41H0EN1 KFGB45H0EN1

модель	дель			KFGB27H0EN1	KFGB30H0EN1		KFGB41H0EN1	KFGB45H0EN1		
Производительность	кВт	Охлаждение (выс./сред./низ.)	2.20/1.84/1.65	2.64/2.24/2.05	3.08/2.62/2.27		4.07/3.73/3.24	4.45/4.18/3.74		
		Нагрев (выс./сред./низ.)	3.02/2.60/2.23	3.69/3.25/2.77	4.34/3.	86/3.25	5.69/5.12/4.32	6.30/5.67/4.73		
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1							
Потребляемая мощность	Вт	Охлаждение	28	40	44		50	60		
Расход воздуха	м³/ч	Выс./сред./низ.	425/360/320	510/430/380	680/580/510		850/720/640	1020/870/770		
Уровень шума	дБА	Выс./сред./низ.	30/24/20	35/29/24	37/31/26		39/33/28	40/34/29		
Габариты	ММ	ШхВхГ	915x290x230			1072x315x230				
Bec	КГ		12 15							

💠 ФАНКОЙЛЫ НАПОЛЬНО-ПОТОЛОЧНОГО ТИПА

2-трубные фанкойлы напольно-потолочного типа представлены в двух вариантах: с корпусом и без корпуса, встраиваемые в нишу. Каждый вариант представлен 9 моделями в диапазоне холодопроизводительности от 1.15 до 7.85 кВт. Все они снабжены трехскоростными малошумными вентиляторами.

В стандартную комплектацию фанкойлов входят воздушный фильтр и дренажный поддон для 3–ходового вентиля. Дополнительно фанкойлы могут быть укомплектованы 3-ходовым вентилем KFV-21 или комплектами трубной обвязки с 3–ходовым вентилем KFV12-H1L(R)*.

Подсоединение водяных труб к фанкойлу осуществляется с помощью резьбовых соединений \varnothing 3/4″.

МОДЕЛЬНЫЙ РЯД

KFHD12H0EN1 KFHD48H0EN1 KFHD20H0EN1 KFHD57H0EN1 KFHD25H0EN1 KFHD65H0EN1 KFHD30H0EN1 KFHD78H0EN1 KFHD38H0EN1 KFHE12H0EN1 KFHE20H0EN1 KFHE25H0EN1 KFHE30H0EN1 KFHE38H0EN1 KFHE48H0EN1 KFHE57H0EN1 KFHE65H0EN1 KFHE78H0EN1

модель		KFHD_H0EN1	12	20	25	30	38	48	57	65	78	
	кВт	Охлаждение	1.15	1.87	2.53	3.27	3.97	4.85	5.64	6.52	7.85	
Производительность	KBT	Нагрев	1.52	2.53	3.49	4.58	5.64	6.98	8.23	9.58	11.69	
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1									
Потребляемая	Вт	Охлаждение	27	29	40	46	40	49	63	118	137	
мощность	DI	Нагрев	27	29	40	46	40	49	63	118	137	
Расход воздуха	м³/ч	Макс./сред./мин.	255/215/190	425/360/320	510/430/380	680/580/510	765/650/570	850/720/640	1020/870/765	1360/1160/1020	1530/1300/1150	
Уровень шума	дБА	Выс./сред./низ.	32/29/26	35/32/30	37/34/32	39/36/34	41/38/36	43/40/38	44/41/39	46/43/40	48/45/42	
Габариты	MM	ШхВхГ	800x592x225	800x592x225	1000x592x225	1000x592x225	1200x592x225	1200x592x225	1500x592x225	1500x592x225	1500x592x225	
Bec	КГ	-	22.5	22.5	26	26	32.5	32.5	39	39	39	
модель		KFHE_H0EN1	12	20	25	30	38	48	57	65	78	
D	кВт	Охлаждение	1.15	1.87	2.53	3.27	3.97	4.85	5.64	6.52	7.85	
Производительность		Нагрев	1.52	2.53	3.49	4.58	5.64	6.98	8.23	9.58	11.69	
Электропитание	В, Гц, Ф	Однофазное	220~240, 50, 1									
Потребляемая	Вт	Охлаждение	27	45	44	46	40	49	77	118	137	
мощность		Нагрев	27	45	44	46	40	49	77	118	137	
Расход воздуха	м³/ч	Макс./сред./мин.	255/215/190	425/360/320	510/430/380	680/580/510	765/650/570	850/720/640	1020/870/765	1360/1160/1020	1530/1300/1150	
Уровень шума	дБА	Выс./сред./низ.	32/29/26	35/32/30	37/34/32	39/36/34	41/38/36	43/40/38	44/41/39	46/43/40	48/45/42	
Габариты	MM	ШхВхГ	550x545x212	550x545x212	750x545x212	750x545x212	950x545x212	950x545x212	1250x545x212	1250x545x212	1250x545x212	
Bec	КГ		17	17	20	20	25	25	32	32	32	

^{*} Комплект трубной обвязки может быть как левосторонним KFV12-H1L, так и правосторонним KFV12-H1R.

ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ

⇔ МОДЕЛЬНЫЙ РЯД

Модельный ряд вентиляционных установок Kentatsu STORMANN AERO состоит из 2 типов с производительностью по воздуху от 800 до $110\,000\,\text{m}^3/\text{ч}$.

KVSA — стандартные, с толщиной панели 25 мм, расход от 800 до 80 000 м³/час, 13 типоразмеров.

KVSE — модульные, для наружного и внутреннего применения с толщиной изоляции 50 мм, расход от 500 до 85~000 м 3 /час, 32 типоразмера.

🜣 ОСОБЕННОСТИ ВЕНТИЛЯЦИОННЫХ УСТАНОВОК KENTATSU STORMANN

- Модульно-секционная конструкция установки определяет ее компактность и способствует удобству монтажа.
- Возможна поставка установки в разобранном виде (по спецзаказу).
- Выбор материала панелей и вариантов отделки: оцинкованная сталь с разнообразными покрытиями или окраской, а также из нержавеющей стали.
- Толщина изоляции из минеральной ваты или ПУР 25 мм или 50 мм.
- Поддон для сбора конденсата выполнен в стандартной комплектации из алюминия, опционально из нержавеющей стали.
- Все элементы установки, например, вентилятор, теплообменники и др., имеют доступ для легкого обслуживания.
- Высокая степень герметичности установки, улучшенная шумоизоляция.
- Возможность комплектации различными средствами автоматического регулирования.

☆ МНОГОВАРИАНТНОСТЬ УСТАНОВКИ

Установки Kentatsu Stormann Aero кроме обычного выпускаются в следующих исполнениях: для наружной установки, взрывозащищенные, для чистых помещений, для АЭС и других объектов с повышенными требованиями к сейсмоустойчивости, с газовым и паровым нагревом, в подвесном исполнении (KVSE), для химически агрессивных сред.

💲 ОБОРУДОВАНИЕ ДЛЯ ЧИСТЫХ ПОМЕЩЕНИЙ (ГИГИЕНИЧЕСКОЕ ИСПОЛНЕНИЕ)

Вентиляционные установки в гигиеническом исполнении применяются при наличии специальных требований к качеству очистки воздуха. Используется в следующих случаях:

- лечебно-диагностические учереждения;
- фармацевтическая промышленность;
- электронная промышленность;
- химическая промышленность.

Все оборудование для чистых помещений компании Kentatsu изготовлено в соответствии с требованиями DIN 1946 T4 (гигиеническое исполнение).

Кондиционеры Kentatsu Stormann Aero в стандарте DIN 1946 Т4 отличаются абсолютно гладкими внутренними поверхностями, т. е. не имеют обрезных кромок и сварных швов.

Все щели и стыки герметизированы. Используются уплотнители, устойчивые к воздействию дезинфицирующих веществ. Конструкторская концепция такова, что любой элемент аппарата доступен для чистки или демонтажа.

Установки Kentatsu Stormann Aero обладают высокой степенью герметичности и соответствуют международным стандартам EN 1886.

Камера служит для нагрева воздуха. Источником тепла являются газовые (природный газ, пропан) или жидкостные (легкое нефтяное топливо, мазут) горелки Weishaupt или Elco (KVSE), как правило, с бесступенчатым регулированием. Рабочее давление газа, подаваемого в горелку, должно быть от 1.7 до 50 кПа. Воздух нагревается в теплообменнике. Дымовые и отходящие газы полностью отделены от обрабатываемого воздуха. Коэффициент эффективности горелки составляет 91-93%. Нагреватели предлагаются в трех вариантах дизайна.

- Вариант без байпаса для нагрева наружного воздуха (T=30-40 °C). Применяется в случае, если точность поддержания температуры подаваемого воздуха не имеет большого значения.
- Вариант с байпасом, небольшая мощность для предварительного нагрева воздуха перед смешиванием или рекуперацией (T=10-20 °C). Более точное управление температурой подаваемого воздуха.
- Вариант с байпасом, большая мощность для нагрева наружного воздуха (T=30-40 °C). Позволяет более точно поддерживать температуру приточного воздуха. Клапан байпаса позволяет пропускать одну часть воздуха через теплообменник, другую через обводной канал. Таким образом можно избежать перегрева дымовых газов и конденсата, сохраняя оптимальную эффективность. В стандарте газовые горелки в газовых камерах центрального кондиционера находятся со стороны операционного блока, а вывод дымовых газов и конденсата находится на противоположной (задней) стороне.

❖ УСТАНОВКИ ДЛЯ АЭС И ДРУГИХ ОБЪЕКТОВ С ПОВЫШЕННЫМИ ТРЕБОВАНИЯМИ К СЕЙСМОУСТОЙЧИВОСТИ

Установки типа KVSA изготавливаются в сейсмостойком исполнении и соответствуют требованиям «Общих положений обеспечения безопасности атомных станций» (ОПБ-88/15), а также другим нормам и требованиям, предъявляемым к оборудованию для атомной энергетики. Созданы на основе кондиционеров общепромышленного исполнения, имеют тот же состав, размеры и технические характеристики.

Область применения — взрывоопасные зоны помещений. Обеспечивается уровень взрывозащиты «1» или «2».

Взрывобезопасность установок достигнута за счет:

- использования материалов, не допускающих воспламенения взрывоопасной газовоздушной смеси от фрикционных искр:
- установки в зоне вращения рабочего колеса вентилятора специального кольца из меди;
- применения токопроводимых материалов;
- обеспечения стока электростатических зарядов за счет заземления металлических корпусных элементов;
- применения антистатических приводных ремней;
- обеспечения осевых и радиальных зазоров между рабочим колесом и входным патрубком;
- применения комплектующего электрооборудования во взрывозащищенном исполнении (ремонтный выключатель, освещение и др.)

Конструктивные мероприятия, выполняемые при изготовлении взрывозащищенных установок

Вытянутые профили из оцинковки надеты на алюминевые угольники. Оболочка камер выполнена из оцинкованных стальных панелей (снаружи, как правило, имеют цветную отделку). Поворотные петли у дверей камеры перекрыты проводом из меди. Для этого перекрытия применяются веерообразные шайбы.

Взрывозащищенные вентиляторы:

- имеют рабочую частоту вращения на 20% ниже максимальной частоты вращения;
- устанавливаются только с горизонтальным валом;
- для вентиляторов с клиноременной передачей исполнение аналогично стандартному (рабочее колесо — с покрытием), всасывающий коллектор — из меди.

Стандартные взрывозащищенные электродвигатели могут регулироваться при помощи преобразователя частоты только в случае, если они установлены не во взрывоопасной зоне.

Фильтры при взрывозащищенном исполнении оборудования не должны электростатически заряжаться.

Воздушные клапаны — исполнительный механизм клапана устанавливается вне взрывоопасной среды. Регулирующие листы клапанов токопроводимо соединены с каркасом медными проводами.

Шумоглушители с покрытием из стальных оцинкованных перфорированных листов.

Электрические воздухонагреватели — особой конструкции (только по запросу).

Гибкие вставки — изготовлены из антистатического полотна.

Защитные приспособления для воздухозаборного и воздуховыпускного отверстий предусматриваются для исключения попадания посторонних предметов в вентилятор.

УСТАНОВКИ В ПОДВЕСНОМ ИСПОЛНЕНИИ

Приточно-вытяжные установки KVSE (типоразмеры 02 и 03) могут быть изготовлены в подпотолочном (подвесном) исполнении.

Конструкция агрегата для подвесного исполнения ничем не отличается от напольной: рама выполнена из алюминиевого профиля с теплоизоляцией из минеральной ваты или полиуретана.

- При помощи элементов крепления воздухообрабатывающие агрегаты закрепляются под потолком. Сэндвич-панели отличаются повышенным уровнем шумоизоляции.
- Установки в подвесном исполнении имеют удобный доступ снизу для техобслуживания.
- Панели можно откинуть в любую сторону (на бок) или полностью снять.
- Приточно-вытяжные установки в подпотолочном исполнении по внутреннему составу ничем не отличаются от напольной версии.
- В модели KVSE типоразмера 03 используются два малошумных энергоэффективных вентилятора, работающих в тандеме.
- Модель оснащена рекуператорами различных размеров с эффективностью утилизации тепла в интервале от 50 до 65 %.

🗱 УСТАНОВКИ В ИСПОЛНЕНИИ, УСТОЙЧИВОМ К ХИМИЧЕСКИ АГРЕССИВНЫМ СРЕДАМ

Приточно-вытяжные установки KVSE можно произвести в устойчивом к воздействию химически агрессивных веществ исполнении. В этом случае необходимо знать концентрацию вредных веществ в воздухе, чтобы максимально точно спроектировать оборудование: подобрать подходящую отделку внешней и внутренней поверхности корпуса, а также заказать внутренние компоненты в специальном исполнении.

В качестве дополнений к данному исполнению предлагаются следующие опции:

- 1. Специальное химически устойчивое покрытие LCE Coating для теплообменников, способное выдерживать температуру вплоть до $120\,^{\circ}$ C.
- 2. Вентиляторы, оснащенные импеллером, изготовленным по технологии ZAmid из коррозиестойкого материала.
- 3. Центробежные вентиляторы (со спиральным кожухом).
- 4. Вентиляторы с электронно-коммутируемыми двигателями.
- 5. Корпус из нержавеющей стали.

В дополнение ко всему вышеперечисленному доступны различные виды покрытий с напылением (например, E-CTFE HALAR, PA11 RILSAN, PE и PTFE).

З ИСПЫТАТЕЛЬНАЯ ЛАБОРАТОРИЯ

Измерение параметров работы вентиляционных агрегатов Kentatsu Stormann Aero является неотъемлемой частью системы управления качеством производственных процессов. Без таких измерений невозможно разработать качественную продукцию. Поэтому мы занимаемся тестированием наших установок. Лаборатория является одной из самых современных на сегодняшний день. Испытательная лаборатория – один из ключевых факторов успешного положения на рынке, благодаря которому компания Kentatsu продолжает оставаться лидирующим производителем холодильного и вентиляционного оборудования.

🕏 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Программное обеспечение (ПО) было разработано как специальный инструмент для проектировщиков, специалистов и менеджеров по продажам. Цель — обеспечить потребителя удобным ПО для простого и эффективного выбора наиболее подходящего варианта АНU из имеющегося спектра оборудования.

ПО легкое в применении благодаря интерактивному графическому интерфейсу. Пользователь имеет возможность видеть боковые планы и схемы расположения, а также размеры предлагаемых АНИ. Также ПО предлагает широкий выбор выходящей информации, например, технические спецификации агрегата, включая чертежи в формате *.BMP, а также кривые характеристик вентиляторов. ПО предлагает техническое описание и предполагаемую стоимость определенного агрегата в формате *.DOC с чертежами CAD (масштаб 1:1) в формате *.DXF.

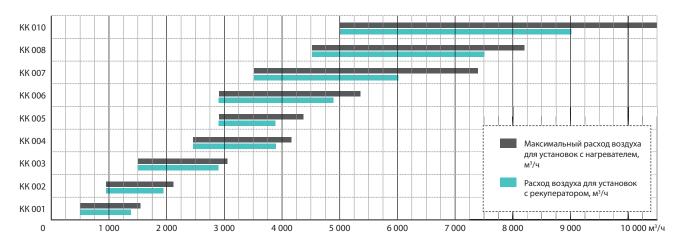
Более подробную информацию можно найти на сайте www.daichi.ru

ВЕНТИЛЯЦИОННОЕ ОБОРУДОВАНИЕ СЕРИИ «КОМФОРТ»

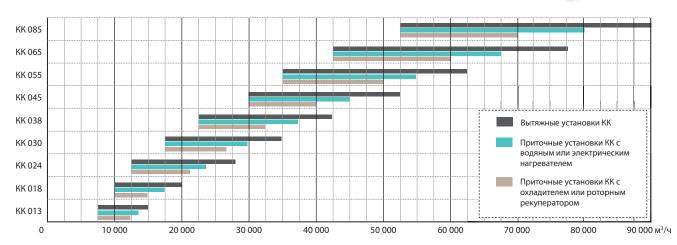
Вентиляционные установки Kentatsu серии «Комфорт» (КК) разработаны для создания и поддержания искусственного климата в помещениях с учетом сложных российских климатических условий.

- Агрегаты могут иметь общепромышленное или гигиеническое (для чистых помещений) исполнение.
- Вентиляционное оборудование изготавливается из российских и импортных комплектующих.
- Размерный ряд центральных кондиционеров серии КК один из самых широких среди предлагаемых сегодня на рынке. Диапазон производительности вентиляционных установок по воздуху составляет от 500 до 90 000 м³/ч (18 типоразмеров) в 18 различных вариантах комплектаций.

- Применяемые в вентиляционных установках вентиляторы со «свободным колесом» имеют самый высокий статический КПД, а следовательно, низкий уровень шума. Цена секции вентилятора ниже, транспортировка и монтаж дешевле. Кроме того, нет необходимости в замене ремней.
- Серия характеризуется высоким уровнем шумо- и виброизоляции, высокой жесткостью корпуса, устойчивостью корпусных элементов к внешним воздействиям, простотой и надежностью крепления внутренних узлов и агрегатов, высоким КПД, строгим поддержанием расчетных режимов работы, долговечностью как корпусных элементов, так и исполнительных агрегатов. Продуманность конструкции и высокая культура производства обеспечивают эргономичность сервисных операций.
- Установки отличаются оптимальным соотношением производительности и габаритных размеров. В своем классе они самые компактные, следовательно, экономят средства при транспортировке и монтаже.
- В установках 500-10 000 м³/ч (типоразмеры 001-010) используются ЕС-электродвигатели ведущего европейского производителя. Их КПД достигает высокого уровня 92%, благодаря чему потребление электроэнергии может быть снижено на 30%.
- Установки производительностью до 10 000 м³/ч изготавливаются в моноблочном исполнении, большей производительности в бескаркасном секционном исполнении. Панели корпуса выполнены из оцинкованной стали и минеральной ваты. Толщина стенок корпуса вентиляционных установок составляет 50 мм. Это позволяет добиться высокой герметичности конструкции, а также обеспечивает практически бесшумную работу оборудования.
- Установки изготавливаются для двух вариантов монтажа: внутри помещения и на улице. Уличное исполнение вентиляционных установок представляет собой бескаркасную моноблочную камеру.
- Внешние панели корпуса дополнительно покрываются порошковыми красками любого цвета по желанию заказчика.



ПРОИЗВОДИТЕЛЬНОСТЬ ПО ВОЗДУХУ МОНОБЛОЧНЫХ БЕСКАРКАСНЫХ ЭНЕРГОСБЕРЕГАЮЩИХ ВЕНТИЛЯЦИОННЫХ УСТАНОВОК



Типоразмер КК								
KK 001	KK 002	KK 003	KK 004	KK 005	KK 006	KK 007	KK 008	KK 010
Условно-номина	Условно-номинальная производительность, м³/ч							
900	1 900	2 800	4 000	4 500	5 000	7 000	8 000	10 000

ПРОИЗВОДИТЕЛЬНОСТЬ ПО ВОЗДУХУ СЕКЦИОННЫХ ПРИТОЧНО-ВЫТЯЖНЫХ УСТАНОВОК

Типоразмер КК								
KK 013	KK 018	KK 024	KK 030	KK 038	KK 045	KK 055	KK 065	KK 080
Условно-номина	Условно-номинальная производительность, м³/ч							
13 000	18 000	24 000	30 000	38 000	45 000	55 000	66 000	88 000

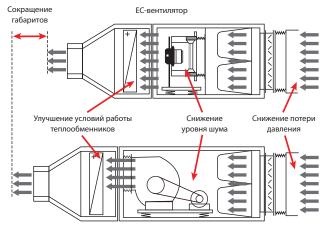
★ МОНОБЛОЧНЫЕ БЕСКАРКАСНЫЕ ЭНЕРГОСБЕРЕГАЮЩИЕ ВЕНТИЛЯЦИОННЫЕ УСТАНОВКИ

‡ КОРПУС

Корпус бескаркасных вентиляционных установок серии КК представляет собой моноблочную несущую конструкцию. Панели выполнены из оцинкованной стали со слоем изоляции. Толщина стенок корпуса составляет 50 мм, что позволяет обеспечивать высокую жесткость конструкции. Тепло- и шумоизоляцию обеспечивают негорючие плиты на основе базальтовой минеральной ваты, которые обладают рядом преимуществ:

- 1. Акустический комфорт: волокнистая структура базальтовой минеральной ваты делает ее хорошим звукоизолирующим материалом.
- 2. Низкий коэффициент теплопроводности обеспечивает высокие теплоизолирующие свойства материала.
- 3. Высокая прочность гарантирует отсутствие деформации даже при больших нагрузках.
- 4. Низкое влагопоглощение (менее 1,5%) не позволяет распространяться плесени.
- 5. Пожаробезопасность: плиты на основе базальтовой минеральной ваты негорючий материал, они выдерживают воздействие температуры в 1000 °C в течение 2 часов.

Порошковая окраска защищает внешние панели корпуса бескаркасных установок КК от воздействия внешней среды. По желанию заказчика установка может быть окрашена в любой необходимый цвет.


Все бескаркасные энергосберегающие вентиляционные установки могут быть выполнены в уличном исполнении (H). Уличное исполнение вентиляционных установок серии КК представляет собой бескаркасную моноблочную камеру, предназначенную для размещения вне здания. Основным отличия установок уличного исполнения — защитный козырёк и закрытый воздухозаборный патрубок.

ЭЛЕКТРОДВИГАТЕЛИ

В приточных установках и вытяжных камерах применяются компактные электронно-коммутируемые ЕС одно- и трехфазные электродвигатели с внешним ротором. ЕС-двигатель — это синхронный двигатель со встроенным электронным управлением (внешнее частотное регулирование не требуется). Корпус электродвигателя имеет изоляцию IP54.

Основными преимуществами ЕС-вентиляторов по сравнению с обычными вентиляторами с асинхронными АС-двигателями являются:

- КПД до 92%, вследствие этого уменьшение потребления энергии до 30% и короткий срок окупаемости.
- Компактность исполнения при сохранении высоких технических характеристик.
- ЕС-вентиляторы плавно реагируют на изменение требований по выходной мощности, работают в особо экономном режиме частичной нагрузки и нечувствительны к колебаниям напряжения.
- Управляющая электроника позволяет осуществить плавный пуск и плавное регулирование оборотов электродвигателя, что позволяет избежать «ударов» при старте и регулировании мощности вентилятора, вследствие чего возрастает срок безотказной работы электродвигателя.
- Управление 0...10 В или по фактическому значению напряжения.
- Возможность подключать напрямую к вентилятору внешние управляющие датчики (давления, температуры и т. д.), а также простейшие потенциометры без применения дорогостоящих систем.
- Сигнализация об аварии с помощью релейного выхода.
- Управление при помощи встроенного ПИД-регулятора.
- Встроенный источник питания для датчиков 0...10 В или 4...20 мА.
- Выход 0...10 В для slave-подключения.
- Контроль за понижением напряжения в сети и обрывом фаз.
- Защита двигателя от превышения тока, от перегрева.
- Защита от перегрева платы управления.
- Автоматическая блокировка двигателя при аварии.
- Низкий уровень шума и тепловыделения.

Традиционный вентилятор с ременной передачей

🌣 РОТОРНЫЕ РЕКУПЕРАТОРЫ

В приточно-вытяжных установках серии КК благодаря высокоэффективным роторным рекуператорам можно использовать удаляемый из помещения воздух как вторичный энергоресурс. Рекуператор состоит из теплообменника и ротора, приводимого в движение электродвигателем посредством ременной передачи. Теплообменник представляет собой алюминиевую фольгу, намотанную на вал попеременно гладкой и волнистой стороной. Фольга образует каналы, через которые проходит воздух.

Эффективность рекуперации зависит от высоты волны и ширины ротора. В установках КК используются рекуператоры с шириной 250 мм и высотой волны 1,6 мм. Такая геометрия является наиболее эффективной для достижения максимального эффекта рекуперации.

СЕКЦИОННЫЕ ПРИТОЧНО-ВЫТЯЖНЫЕ УСТАНОВКИ КК 013-080

Центральные секционные кондиционеры КК представляют собой набор последовательно размещенных функциональных блоков. Комбинация и размещение блоков могут быть различными в зависимости от технических требований, предъявляемых к кондиционеру и месту его установки.

В основе концепции разработки центральных кондиционеров лежит принцип использования так называемого «свободного колеса» в вентиляторной секции агрегата. В центральных кондиционерах применяются рабочие колеса с загнутыми назад лопатками. Корпус выполнен в виде бескаркасной несущей конструкции с панелями из оцинкованной стали и слоем изоляции. Толщина стенок корпуса составляет от 50 до 75 мм в зависимости от типоразмера, что позволяет обеспечивать высокую жесткость конструкции. Тепло-шумоизоляцию обеспечивают негорючие плиты на основе базальтовой минеральной ваты.

В вентиляторной секции центральных кондиционеров используются асинхронные трехфазные электродвигатели, а регулирование требуемых оборотов рабочего колеса осуществляется с помощью частотного регулятора.

В состав кондиционеров входит большой набор функциональных секций, различных по своему назначению, а их синтез позволяет сформировать необходимый кондиционер для конкретного помещения и параметров воздушной среды.

СЕКЦИЯ ВЕНТИЛЯТОРА

НАЗНАЧЕНИЕ

Секция вентилятора предназначена для перемещения воздуха в кондиционере и подачи его в обслуживаемое помещение

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

В секциях вентилятора применена компоновка со свободным рабочим колесом с прямым приводом на вал электродвигателя. Изменение числа оборотов электродвигателя достигается с помощью частотного регулятора. В секциях применяются асинхронные короткозамкнутые двигатели с усиленными подшипниками фирмы Siemens.

Лопатки рабочего колеса у данного типа вентиляторов загнуты назад. Вентиляторы с загнутыми назад лопатками имеют более высокий КПД по сравнению с вентиляторами с загнутыми вперед лопатками, что позволяет сократить расход электроэнергии на 25%.

Использование вентиляторов со свободным рабочим колесом и АС-двигателями в центральных секционных кондиционерах КК дает ряд преимуществ:

- Низкая цена секции вентилятора.
- Возможность стандартного регулирования частотным преобразователем.
- КПД до 75% гарантирует низкие эксплуатационные расходы
- Малые габаритные размеры секций.
- Эксплуатация, не требующая обслуживания (нет необходимости в замене ремней).
- Тихая работа по сравнению с традиционными вентиляторами с ременными передачами.

❖ ГИДРАВЛИЧЕСКИЕ КОМПОНЕНТЫ ДЛЯ ЧИЛЛЕРОВ

Буферные баки и гидравлические модули входят в линейку гидравлических компонентов Kentatsu. Они могут использоваться в системах типа чиллерфанкойл любого производителя.

Буферные баки предназначены для решения проблемы тепловой инерции в системе холодоснабжения и кондиционирования. Их использование позволяет:

- увеличить емкость теплоносителя в системе и сократить количество запусков компрессоров и насосного оборудования, вследствие чего увеличивается срок службы холодильных машин;
- обеспечить повышенную гибкость использования системы благодаря возможности ее эксплуатации при небольших отклонениях рабочих температур от расчетных;
- достичь большей экономии на эксплуатационных расходах за счет возможности применения холодильных машин меньшей мощности.

Применение гидравлических модулей, объединяющих различные узлы и компоненты:

- обеспечивает нормальное функционирование гидравлической системы;
- позволяет сократить время на монтаж систем кондиционирования и холодоснабжения.

❖ ОСОБЕННОСТИ ГИДРАВЛИЧЕСКИХ КОМПОНЕНТОВ KENTATSU

Буферные баки системы холодоснабжения

- Вертикальное или горизонтальное исполнение.
- Рабочее давление 3 и 6 бар.
- Широкий диапазон рабочих температур: от -10 до +60 °C.
- Различная внутренняя конструкция.
- Размер баков от 100 до 5000 литров.

Гидравлические модули

- С одним или двумя центробежными насосами.
- С инверторным насосом.
- Без циркуляционного насоса с буферным и расширительным баком, манометром, предохранительным, наливным и сливным клапанами.
- Электрический щит питания и управления со степенью защиты IP56.
- Рабочее давление 3 и 6 бар.
- Варианты исполнения от 100 до 2500 литров.
- Корпус со стальным каркасом, панельной обшивкой из оцинкованной окрашенной стали, предоставляющий возможность наружной установки.

🗱 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ: ПЕРЕДОВЫЕ TEXHОЛОГИИ KENTATSU

Высокоскоростной микропроцессор производит обработку большого количества команд и осуществляет контроль режимов работы кондиционера. По аналогии с компьютером, чем выше скорость преобразования информации, тем больше

возможности микропроцессора. В дальнейшем это позволит расширять возможности кондиционера.

4-секционный теплообменник с биопокрытием значительно эффективнее односекционного за счет увеличения на треть площади изогнутой поверхности при сохранении габаритных размеров. Это позволяет значительно сократить толщину вну-

треннего блока. Бактерицидное биопокрытие теплообменника предотвращает размножение и распространение микроорганизмов, попадающих во внутренний блок вместе с потоком воздуха.

Пульсационный компрессор обеспечивает плавное изменение производительности кондиционера без применения инверторной технологии. Он поддерживает температуру в помещении с точностью, свойственной инверторной технике.

и при этом стоит столько же, сколько стандартный компрессор. Такой компрессор исключает большие пусковые токи, имеет продолжительный срок службы и экономит электроэнергию.

Инверторная технология повышает точность поддержания температуры, экономит электроэнергию, снижает уровень шума и увеличивает срок службы компрессора за счет плавного изменения производительности кондиционера. Используется

более сложный по сравнению со стандартным кондиционером микропроцессор, который расширяет возможности управления, например, защищает кондиционер от нестабильности электропитания.

Трапецеидальная форма канавок на внутренней поверхности труб теплообменника улучшает его теплообменные процессы с окружающим воздухом. Она же снижает энергопотребление по сравнению с любой другой формой (треугольной, пря-

моугольной) и, тем более, по сравнению с ровной поверхностью. Такая форма позволяет повысить производительность и энергоэффективность кондиционера при сохранении габаритных размеров блоков.

КОМФОРТ

Автоматическое качание заслонок создает комфортную циркуляцию воздуха во всем помещении. Такая циркуляция в сочетании с правильно подобранной температурой создает эффект морского бриза, который придумала сама природа

для естественного перемешивания воздушных масс. Скорость воздуха из внутреннего блока ограничена величиной 0.3 м/с, поэтому вредные для здоровья сквозняки исключены.

Быстрый выход на режим ускорит достижение установленной на пульте температуры. Для этого на пульте управления предусмотрена кнопка Turbo. После ее нажатия сразу возрастет скорость вращения вентилятора внутреннего блока, и темпе-

ратура в помещении начнет быстрее приближаться к установленной на пульте. Через 15 минут скорость вентилятора автоматически снизится до первоначального значения.

Подмес атмосферного воздуха предоставляет возможность частичной вентиляции помещения (до 30% от объема воздушного потока) для повышения содержания кислорода и удаления избытков углекислого газа. Для этого во время монтажа

кондиционера (канального, кассетного или настенного) устанавливают специальное устройство, которое добавляет к воздуху помещения свежий воздух с улицы. Добавляемый воздух фильтруется, а в межсезонье может еще и подогреваться, обеспечивая комфортные параметры микроклимата.

Объемный воздушный поток обеспечивает наилучшее перемешивание воздуха в помещении, предотвращая образование застойных зон и неравномерного температурного фона. Такой поток образуется путем сложения перемещений воздухора-

спределительных устройств кондиционера – горизонтальных заслонок и вертикальных жалюзи. Постоянное изменение направления полачи воздуха в помещение, закономерностью которого можно управлять, исключает сквозняки и позволяет создать эффект морского бриза.

Теплый пуск исключает подачу холодного воздуха в помещение при режиме нагрева, когда холодный воздух помещения еще недостаточно прогрет. Вентилятор автоматически начнет работать только после того, как испаритель нагреется до заданной

на пульте управления температуры. У пользователя же может сложиться впечатление, что кондиционер начинает работать с некоторой задержкой.

Управление скоростью вентилятора внутреннего блока позволяет менять производительность кондиционера с одновременным изменением скорости подачи воздуха в помещение низкая-средняя-высокая-авто. Первые три из них можно

задавать с помощью пульта управления, а при четвертой это делает микропроцессор в зависимости от разности температур – в помещении и установленной на пульте управления.

Осушение воздуха происходит без снижения его температуры, что обычно эффективно в дождливые дни или в районах с высокой влажностью воздуха. При обычных погодных условиях относительная влажность воздуха в помещении поддержи-

вается в диапазоне от 35 до 60%, что является наиболее комфортным значением для человеческого организма. Одновременно экономится электроэнергия, идущая на нагрев теплообменника.

Локальный микроклимат создается не во всем помещении, а в его ограниченной зоне. Она может быть строго зафиксирована, а может и перемещаться, но именно в ней с помощью кондиционера обеспечивается достижение комфортных значений

параметров. С этой целью в пульте дистанционного управления размещают термистор, который измеряет температуру в локальной зоне помещения и периодически передает результаты измерений во внутренний блок, регулирующий изменение параметров воздушного потока.

Малошумный вентилятор с рабочим колесом большого диаметра значительно снижает уровень шума внутреннего блока. Его лопасти рассчитаны путем компьютерного моделирования воздушных потоков, они обеспечивают бесшумную работу при

низких скоростях без потери объемного расхода воздуха. Такой кондиционер очень удобен для детской комнаты или для библиотеки, а также для всех, кто предпочитает тишину.

Функция «Не беспокоить». Функция отключения дисплея, звуковых сигналов и боковой подсветки (в некоторых моделях). Возможен автоматический (реакция на выключение/ включение освещения) и ручной режим (с пульта управления).

Функция «Комфортный сон». Во время сна установленная температура изменяется в течение двух часов, что предотвращает переохлаждение или перегрев человека, также снижается уровень шума и электропотребление. Через 7 часов предыду-

щий режим автоматически восстановится, поэтому после пробуждения пользователь окажется в тех же условиях, что и перед сном.

⇔ 3ДОРОВЬЕ

Многоступенчатая очистка воздуха в помещении обеспечит его соответствие требованиям международных стандартов по содержанию бытовых загрязнений и запахов. Фильтры механической, электростатической, адсорбционной и фотокатали-

тической очистки задержат тополиный пух, шерсть животных, устранят большинство бытовых запахов, предотвратят появление плесени, дезактивируют вирусы и микробы.

Автоматическая самоочистка испарителя исключает образование плесени и неприятных запахов во внутреннем блоке. Причиной этому становится пыль, содержащаяся в воздушном потоке, поступающем из помещения, и оседающая на филь-

трах. Для исключения отрицательного воздействия этих загрязнений на микроклимат помещения нужно своевременно удалять излишнюю влагу с поверхности испарителя. Этот процесс осуществляется автоматически путем периодической просушки внутреннего блока.

Фильтр высокой степени очистки в комплекте. Фильтр имеет ячейки размером менее 500 мкм, вследствие чего задерживается на 80% больше пыли и пыльцы, чем обычным предварительным фильтром.

☆ НАДЕЖНОСТЬ

Комплект для низкой температуры обеспечит работоспособность кондиционера в режиме охлаждения при температуре атмосферного воздуха до -40°C. В тех районах, где температура на улице ниже не опускается, кондиционер может работать

практически круглый год без потери производительности. Он незаменим для серверных, студий звукозаписи, офисов с большим количеством компьютерной техники и пр.

Защита от нестабильности электропитания в инверторных моделях сохранит работоспособность кондиционера при колебаниях напряжения сети от 160 до 250 В, что значительно превышает стандартные требования к электромеханическим

приборам. В кондиционер изначально встроен стабилизатор напряжения, он не только сбережет ваши средства, но и окажется практически незаменим в сельской местности, в многоквартирных домах, в промышленных районах крупных городов.

Защита от коррозии наружного блока обеспечивается благодаря специальным антикоррозионным покрытиям на корпусе и конденсаторе. Порошковое покрытие не только придает привлекательный внешний вид металлическому корпусу, но и

предохраняет от ржавчины, даже в условиях влажного морского климата. Износостойкое покрытие конденсатора не отслаивается со временем в условиях многократного термоциклирования, предохраняя поверхности от повышенной влажности и воздействия инея.

Самодиагностика и автоматическая защита осуществляется микропроцессором, который может определить неисправность кондиционера и отобразить на табло индикации внутреннего блока факт ее появления. Основываясь на информации от свето-

вых индикаторов, пользователь получает информацию о виде неисправности. Помимо этого кондиционер оснащен автоматическими устройствами защиты, например, от перегрева или от перегрузки компрессора

Автоматическая оттайка инея экономит электроэнергию в режиме нагрева за счет периодических переключений на охлаждение, что освобождает теплообменник наружного блока от наросшего слоя инея.

Обнаружение утечки хладагента. В случае обнаружения процессором наружного блока утечки фреона в кондиционере, датчик, находящийся во внутреннем блоке, подаст звуковой сигнал, и одновременно на дисплее отобразится надпись «EC». Таким

образом пользователь сможет своевременно выключить кондиционер и обратиться в сервисную компанию.

☼ УДОБСТВО

Работа по таймеру позволяет программировать время включения и выключения кондиционера на ближайшие 24 часа. Такой режим позволяет исключить беспокойство по поводу работающего в Ваше отсутствие электромеханического прибо-

ра, а заодно и сбережет электроэнергию. Можно «заказать» комфортный микроклимат к своему приходу, а можно включать и выключать кондиционер в одно и то же время каждый день.

Автоматический выбор режима – охлаждение, нагрев или только вентиляция – происходит без вмешательства пользователя. Микропроцессор будет сам их чередовать в зависимости от разности температур в помещении и установленной

на пульте, обеспечивая экономию потребляемой электроэнергии. Этот режим особенно удобен в межсезонье, поскольку освобождает от частых переключений кондиционера вручную.

Съемная лицевая панель позволяет легко откинуть ее и отделить от корпуса внутреннего блока, не прибегая к услугам специалистов. Не потребуется и специальных инструментов. Уход за внутренним блоком не только облегчен, но и может стать более

качественным, поскольку мытье в теплой воде с применением моющих средств устранит опасность появления грязных разводов на поверхности.

Отсутствие электромагнитных помех позволяет применять кондиционеры в серверных, для телеком-муникационных передач, в студиях звукозаписи, на электростанциях и т.д.

Дренажный комплект автоматически откачивает образовавшийся в поддоне внутреннего блока конденсат по шлангу за пределы помешения.

Автоматический перезапуск возвращает кондиционер после перебоя с электропитанием к предыдущим настройкам без вмешательства пользователя. Эта функция наиболее эффективна при отсутствии кого-либо в помещении или во время

сна. Микропроцессор обязательно «учтет» необходимость 3-х минутной задержки с запуском компрессора, чтобы выровнять давление в холодильном контуре.

Воздушный фильтр в комплекте. В стандартную поставку входит воздушный фильтр, который легко устанавливается в имеющуюся в корпусе рамку-держатель, кондиционер сразу готов к подсоединению воздуховодов и не требуется дополнительных усилий для подбора, приобретения и крепления фильтра.

Wi-Fi Control. Возможность дистанционного управления работой кондиционера, в том числе через Интернет, при помощи планшетного компьютера или смартфона.

Гибкая система подключения внутреннего блока подразумевает возможность вывода фреоновых трубопроводов в двух направлениях.

Цифровой дисплей. Современный светящийся дисплей с четким и контрастным отображением важнейших параметров, в том числе скрытого типа, который виден только при включенном кондиционере.

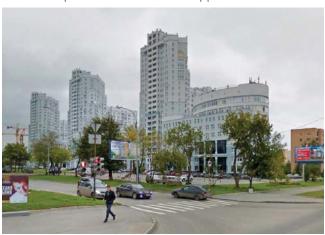
Встроенный электронагреватель включается в тех случаях, когда производительности кондиционера для нагрева помещения недостаточно.

🛟 ОБЪЕКТЫ, ГДЕ УСТАНОВЛЕНЫ СИСТЕМЫ DX PRO И ПРОЧЕЕ ОБОРУДОВАНИЕ

ГОСТИНИЦЫ

ГОСТИНИЦА HILTON GARDEN INN KRASNOYARSK Красноярск, 3.4 МВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ


БИЗНЕС-ЦЕНТР «НАЙДИ» Ижевск, 498 кВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ

ГИПЕРМАРКЕТ СТРОИТЕЛЬНЫХ ТОВАРОВ «КАСТОРАМА» Уфа, 1 МВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ

БИЗНЕС-ЦЕНТР «ТАТИЩЕВСКИЙ» Екатеринбург, 500 кВт

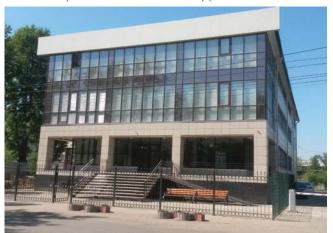
ГОСТИНИЦЫ

ГОСТИНИЧНО-ДЕЛОВОЙ КОМПЛЕКС «ПАРК ПОБЕДЫ» Москва, 1 МВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «МИЛЛЕНИУМ» Омск, 410 кВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ


ДОМ ДРУЖБЫ НАРОДОВ ТАТАРСТАНА Казань, 300 кВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «КРАСНОЛЕСЬЕ» Екатеринбург, 700 кВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ

КОЛЛ-ЦЕНТР «ТЕЛЕ2» Иркутск, 300 кВт

ГОСТИНИЦЫ

ГОСТИНИЦА «ВЕГА» Тольятти, 700 кВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «ЕВРОПА 26» Железногорск, 320 кВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «МИРКАТО» Махачкала, 590 кВт

🛟 ОБЪЕКТЫ, ГДЕ УСТАНОВЛЕНЫ СИСТЕМЫ DX PRO И ПРОЧЕЕ ОБОРУДОВАНИЕ

ГОСУДАРСТВЕННЫЕ УЧРЕЖДЕНИЯ

АО «ИНФОРМАЦИОННЫЕ СПУТНИКОВЫЕ СИСТЕМЫ» ИМЕНИ АКАДЕМИКА М. Ф. РЕШЕТНЁВА», Железногорск, 500 кВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ

ТЕХНОПАРК «ЖИГУЛЕВСКАЯ ДОЛИНА» Тольятти, 3 МВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ

БИЗНЕС-ЦЕНТР «ЛИГА НАЦИЙ» Ростов-на-Дону, 2.5 МВт

БИЗНЕС-ЦЕНТРЫ И ОФИСНЫЕ ЗДАНИЯ

БИЗНЕС-ЦЕНТР «БАСМАННЫЙ ПАРК» Москва, 495 кВт

ГОСУДАРСТВЕННЫЕ УЧРЕЖДЕНИЯ

ГУП «МОСВОДОСТОК» Москва, 440 кВт

ПРОИЗВОДСТВЕННЫЕ ПОМЕЩЕНИЯ

ЗАВОД «МАНРОС-М», ВИММ-БИЛЛЬ-ДАНН Омск, 980 кВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «ПЛАНЕТА» Йошкар-Ола, 836 кВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «SMILE MART» Хабаровск, 295 кВт

ГОСУДАРСТВЕННЫЕ УЧРЕЖДЕНИЯ

АРБИТРАЖНЫЙ СУД ХМАО Ханты-Мансийск, 650 кВт

МЕДИЦИНСКИЕ УЧРЕЖДЕНИЯ

ФГКУ «ПОЛИКЛИНИКА № 1 ФЕДЕРАЛЬНОЙ ТАМОЖЕННОЙ СЛУЖБЫ», Ростов-на-Дону, 340 кВт

ТОРГОВЫЕ ЦЕНТРЫ

ТОРГОВЫЙ ЦЕНТР «ГИГАНТ» Биробиджан, 677 кВт

ОБЪЕКТЫ КУЛЬТУРЫ И ИСКУССТВА

САМАРСКИЙ АКАДЕМИЧЕСКИЙ ТЕАТР ОПЕРЫ И БАЛЕТА Самара, 300 кВт

Ф ОБЩИЕ СПРАВОЧНЫЕ СВЕДЕНИЯ

ОБОЗНАЧЕНИЕ ИСТОЧНИКА ЭЛЕКТРОПИТАНИЯ

Символы	Значение		
N1	~1ф, 220 В – 240 В, 50 Гц		
N3	~3ф, 380 В – 415 В, 50 Гц		

СТАНДАРТНЫЕ УСЛОВИЯ, ДЛЯ КОТОРЫХ В КАТАЛОГЕ ПРИВЕДЕНЫ НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ ХОЛОДО- И ТЕПЛОПРОИЗВОДИТЕЛЬНОСТИ КОНДИЦИОНЕРОВ

	Тепловой режим работы кондиционера			
Измеряемый параметр	T	Охлаждение/нагрев		
	Только охлаждение	Режим охлаждения	Режим нагрева	
T	27 (по сухому термометру)	27 (по сухому термометру)	20	
Температура в помещении, °С	19 (по влажному термометру)	19 (по влажному термометру)		
Tourney was upper popular of	25	25	7 (по сухому термометру)	
Температура наружного воздуха, °С	35	35	6 (по влажному термометру)	
Длина трассы, м	От выхода наружного блока до входа внутреннего блока по горизонтали			
Перепад высот между наружным и внутренним блоками, м	От выхода наружного блока до входа внутреннего блока по вертикали			

УРОВЕНЬ ШУМА

Уровень шума в дБА определялся пересчетом звукового давления, измеренного с помощью микрофона на расстоянии 1 м от внутреннего или наружного блока в специальной акустической камере.

♣ НОМЕНКЛАТУРА КЛИМАТИЧЕСКОЙ TEXHUKU KENTATSU

Информация, представленная в каталоге, является справочной. Технические характеристики, внешний вид и комплектация могут быть изменены производителем без предварительного уведомления.

‡ ДЛЯ ЗАМЕТОК		

ПРЕДСТАВИТЕЛЬСТВА

даичи-астрахань

414021, Астрахань, ул. Боевая, д. 136 Телефон: (8512) 207-307 info@astrakhan.daichi.ru

ДАИЧИ-БАЙКАЛ

664007, Иркутск, ул. Советская, д. 55, оф. 215 Телефон: (3952) 207-104 info@irk.daichi.ru

ДАИЧИ-БАЛТИКА

236040, Калининград, ул. Больничная, д. 24, оф. 48а-49а Телефон: (4012) 53-93-42 info@baltika.daichi.ru

даичи-владивосток

690091, Владивосток, ул. Набережная, д. 20, оф. 317, 318 Телефон: (423) 241-05-30, 241-05-35 info@vl.daichi.ru

ДАИЧИ-ВОЛГА

445037, Тольятти, ул. Новый проезд, д. 3, оф. 227 Телефон: (8482) 200-145 info@volga.daichi.ru

даичи-волгоград

400081, Волгоград, ул. Ангарская, д. 107 Телефон: (8442) 36-13-06, 36-03-34 info@volgograd.daichi.ru

ДАИЧИ-КАЗАНЬ

420107, Казань, ул. Спартаковская, д. 23, оф. 308 Телефон: (843) 278-06-46, 278-06-56 info@kazan.daichi.ru

даичи-красноярск

660020, Красноярск, ул. Шахтеров, д. 4, стр. 5 Телефон: (391) 291-80-20 info@krsk.daichi.ru

ДАИЧИ-КРЫМ

295000, Симферополь, ул. Набережная, д. 75-Д, 4 этаж Телефон: (978) 996-92-92 info@crimea.daichi.ru

ДАИЧИ-МОСКВА

125167, Москва, Ленинградский пр-т, д. 39, стр. 80 Телефон: (495) 737-37-33 msk@daichi.ru

даичи-нижний новгород

603116, Нижний Новгород, ул. Маршала Казакова, д. 5 Телефон: (831) 216-37-08, 216-37-09 info@nnov.daichi.ru

даичи-омск

644009, Омск, ул. Лермонтова, д. 179а, к.1 Телефон: (3812) 36-82-52, 36-95-45 info@omsk.daichi.ru

даичи-ростов

344065, Ростов-на-Дону, пр-т 50-летия Ростсельмаша, д. 1/52, оф. 316 Телефон: (863) 203-71-61 info@rostov.daichi.ru

даичи-сибирь

630007, Новосибирск, ул. Коммунистическая, д. 2, оф. 710 Телефон: (383) 328-08-04 info@nsk.daichi.ru

даичи-сочи

354057, Сочи, ул. Туапсинская, д. 7, оф. 16 Телефон: (862) 261-64-63, 261-60-90 info@sochi.daichi.ru

ДАИЧИ-УРАЛ

620026, Екатеринбург, ул. Бажова, д. 136, оф. 3 Телефон: (343) 262-79-59 info@ural.daichi.ru

ДАИЧИ-УФА

450005, Уфа, ул. Революционная, д. 97/99 Телефон: (347) 273-57-36, 273-93-71 MBiktimirov@ufa.daichi.ru

ДАИЧИ-ХАБАРОВСК

680014, Хабаровск, ул. Иркутская, д. 6 (База «Сугдак»), оф. 111 Телефон: (4212) 41-01-14, 41-01-81 info@khb.daichi.ru

ДАИЧИ-ЦФО

125167, Москва, Ленинградский пр-т, д. 39, стр. 80 Телефон: (495) 737-37-33, доб.: 1759,1851 info@cfo.daichi.ru

ДАИЧИ-ЧЕРНОЗЕМЬЕ

394018, Воронеж, ул. Никитинская, д. 52A, оф. 22 Телефон: (473) 277-12-40, 277-89-65 info@vrn.daichi.ru

даичи-юг

350000, Краснодар, ул. Аэродромная, д. 19 Телефон: (861) 210-06-20, 259-62-36 info@krd.daichi.ru

ЕДИНАЯ СЛУЖБА ПОДДЕРЖКИ КЛИЕНТОВ

8-800-200-00-05

ВРЕМЯ РАБОТЫ СЛУЖБЫ: БУДНИ, С 10:00 ДО 18:00 (ПО МОСКОВСКОМУ ВРЕМЕНИ)

Компания «Даичи» — эксклюзивный дистрибьютор Kentatsu Офис (многоканальный): +7 (495) 737-37-33 info@daichi.ru | www.daichi.ru

